Skip to main content

The Search for Dark Energy

  • Chapter
  • First Online:
  • 292 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The search for Dark Energy (DE) at the LHC relies on the assumption of a non-zero interaction between the DE and the SM fields. Thereby, evidence for DE production can be found either in precision measurements sensitive to the production of virtual DE particles in loop processes or in the direct production of DE particles in pp collisions at the LHC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brax P et al (2009) Collider constraints on interactions of dark energy with the standard model. JHEP 09, 128. https://doi.org/10.1088/1126-6708/2009/09/128

    Article  ADS  Google Scholar 

  2. Brax P et al (2010) Higgs production as a probe of chameleon dark energy. Phys Rev D81:103524. https://doi.org/10.1103/PhysRevD.81.103524

  3. Brax P, Burrage C, Englert C (2015) Disformal dark energy at colliders. Phys Rev D 92(4):044036 (2015). https://doi.org/10.1103/PhysRevD.92.044036

  4. Horndeski GW (1974) Second-order scalar-tensor field equations in a four-dimensional space. Int J Theor Phys 10:363–384. https://doi.org/10.1007/BF01807638

    Article  ADS  MathSciNet  Google Scholar 

  5. Brax P et al (2016) LHC signatures of scalar dark energy. Phys Rev D 94(8):084054 (2016). https://doi.org/10.1103/PhysRevD.94.084054

  6. Brax P (2018) What makes the universe accelerate? a review on what dark energy could be and how to test it. Rep Progr Phys 81(1):016902 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. ATLAS Collaboration (2019) Constraints on mediator-based dark matter and scalar dark energy models using ps = 13 TeV pp collision data collected by the ATLAS detector. JHEP 05, 142 (2019). https://doi.org/10.1007/JHEP05

  8. Busoni Giorgio et al (2014) On the validity of the effective field theory for dark matter searches at the LHC. Phys Lett B 728:412–421. https://doi.org/10.1016/j.physletb.2013.11.069

    Article  ADS  Google Scholar 

  9. Englert Christoph, Spannowsky Michael (2015) Effective theories and measurements at colliders. Phys Lett B 740:8–15. https://doi.org/10.1016/j.physletb.2014.11.035

    Article  ADS  Google Scholar 

  10. Abercrombie D et al (2015) Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum. In: Boveia A et al (ed) arXiv:1507.00966 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Maximilian Köhler .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Köhler, N.M. (2019). The Search for Dark Energy. In: Searches for the Supersymmetric Partner of the Top Quark, Dark Matter and Dark Energy at the ATLAS Experiment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25988-4_13

Download citation

Publish with us

Policies and ethics