Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 284 Accesses

Abstract

The lighter mass eigenstate of the superpartner of the top quark, the top squark, serves as a solution for the Hierarchy problem, if its mass is about 1 TeV. The chapter presents the search for the light top squark in signatures with jets and missing transverse momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In case the electron or muon reconstruction algorithms are reconstructing a lepton although there was no lepton produced in the hard process or the subsequent decay chain, the lepton is commonly referred to as a fake lepton.

References

  1. Collaboration ATLAS (2014) Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. JHEP 09:015. https://doi.org/10.1007/JHEP09(2014)015

    Article  Google Scholar 

  2. Collaboration ATLAS (2014) Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s} = 8\) TeV \(pp\) collisions with the ATLAS detector. JHEP 11:118. https://doi.org/10.1007/JHEP11(2014)118

    Article  Google Scholar 

  3. Collaboration ATLAS (2014) Search for direct top-squark pair production in final states with two leptons in pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. JHEP 06:124. https://doi.org/10.1007/JHEP06(2014)124

    Article  Google Scholar 

  4. Collaboration ATLAS (2015) Measurement of Spin correlation in Top-Antitop quark events and search for top squark pair production in \(pp\) collisions at \(\sqrt{s} = 8\) TeV using the ATLAS detector. Phys Rev Lett 114:142001. https://doi.org/10.1103/PhysRevLett.114.142001

    Article  ADS  Google Scholar 

  5. Collaboration ATLAS (2015) ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider. Eur Phys J C 75:510. https://doi.org/10.1140/epjc/s10052-015-3726-9

    Article  Google Scholar 

  6. Collaboration CMS (2015) Search for supersymmetry using razor variables in events with b-tagged jets in pp collisions at \(\sqrt{s} = 8\) TeV. Phys Rev D 91:052018. https://doi.org/10.1103/PhysRevD.91.052018

    Article  ADS  Google Scholar 

  7. Collaboration CMS (2017) Search for top squark pair production in compressedmass-spectrum scenarios in proton-proton collisions at \(\sqrt{s} = 8\) TeV using the \(\alpha _T\) variable. Phys Lett B 767:403. https://doi.org/10.1016/j.physletb.2017.02.007

    Article  ADS  Google Scholar 

  8. Collaboration CMS (2014) Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at \(\sqrt{s}= 8\) TeV. Phys Lett B 739:229. https://doi.org/10.1016/j.physletb.2014.10.063. arXiv:1408.0806 [hep-ex]

    Article  ADS  Google Scholar 

  9. Alwall J, Schuster P, Toro N (2009) Simplified models for a first characterization of new physics at the LHC. Phys Rev D 79:075020. https://doi.org/10.1103/PhysRevD.79.075020

    Article  ADS  Google Scholar 

  10. Alves D (2012) Simplified models for LHC new physics searches. J Phys G 39. Arkani-Hamed N et al (ed), p 105005. https://doi.org/10.1088/0954-3899/39/10/105005

    Article  ADS  Google Scholar 

  11. Alwall J et al (2014) The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07:079. https://doi.org/10.1007/JHEP07(2014)079

    Article  ADS  Google Scholar 

  12. Lange DJ (2001) The EvtGen particle decay simulation package. Nucl Instrum Methods 462(1–2):152–155. https://doi.org/10.1016/S0168-9002(01)00089-4

    Article  ADS  Google Scholar 

  13. Lönnblad L, Prestel S (2013) Merging multi-leg NLO matrix elements with parton showers. JHEP 03:166. https://doi.org/10.1007/JHEP03(2013)166

    Article  ADS  Google Scholar 

  14. Ball Richard D et al (2013) Parton distributions with LHC data. Nucl Phys B 867:244–289. https://doi.org/10.1016/j.nuclphysb.2012.10.003

    Article  ADS  Google Scholar 

  15. Beenakker W et al (1998) Stop production at hadron colliders. Nucl Phys B 515:3–14. https://doi.org/10.1016/S0550-3213(98)00014-5

    Article  ADS  Google Scholar 

  16. Beenakker W et al (2010) Supersymmetric top and bottom squark production at hadron colliders. JHEP 08:098. https://doi.org/10.1007/JHEP08(2010)098

    Article  ADS  MATH  Google Scholar 

  17. Beenakker W et al (2011) Squark and gluino hadroproduction. Int J Mod Phys A 26:2637–2664. https://doi.org/10.1142/S0217751X11053560

    Article  ADS  Google Scholar 

  18. Borschensky C et al (2014) Squark and gluino production cross sections in pp collisions at \(\sqrt{s} = 13\), 14, 33 and 100 TeV. Eur Phys J C 74:3174. https://doi.org/10.1140/epjc/s10052-014-3174-y

    Article  ADS  Google Scholar 

  19. ATLAS Collaboration (2010) The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. ATL-PHYS-PUB-2010-013. https://cds.cern.ch/record/1300517

  20. ATLAS Collaboration (2016) Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data. ATLAS-CONF-2016-024. 2016. https://cds.cern.ch/record/2157687

  21. Collaboration ATLAS (2016) Muon reconstruction performance of the ATLAS detector in proton-proton collision data at \(\sqrt{s} = 13\) TeV. Eur Phys J C 76:292

    Article  Google Scholar 

  22. Collaboration ATLAS (2017) Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at \(\sqrt{s} = 13\) TeV with the ATLAS detector. JHEP 12:085 arXiv:1709.04183 [hep-ex]

    Google Scholar 

  23. Collaboration ATLAS (2014) Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur Phys J C 74:3071. https://doi.org/10.1140/epjc/s10052-014-3071-4

    Article  Google Scholar 

  24. Collaboration ATLAS (2017) Performance of the ATLAS trigger system in 2015. Eur Phys J C 77:317. https://doi.org/10.1140/epjc/s10052-017-4852-3

    Article  Google Scholar 

  25. Olive KA et al (2014) Rev Part Phys Chin Phys C38:090001. https://doi.org/10.1088/1674-1137/38/9/090001

    Article  ADS  Google Scholar 

  26. Wasserstein Ronald L, Lazar Nicole A (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat 70(2):129–133. https://doi.org/10.1080/00031305.2016.1154108

    Article  MathSciNet  Google Scholar 

  27. Brun R, Rademakers F (1997) ROOT-an object oriented data analysis framework. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 389:81–86

    Article  ADS  Google Scholar 

  28. Lester CG, Summers DJ (1999) Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders. Phys Lett B 463:99–103. https://doi.org/10.1016/S0370-2693(99)00945-4

    Article  ADS  Google Scholar 

  29. Barr A, Lester CG, Stephens P (2003) A variable for measuring masses at hadron colliders when missing energy is expected; m T2: the truth behind the glamour. Nucl Part Phys 29:2343

    Article  ADS  Google Scholar 

  30. Jackson P, Rogan C, Santoni M (2017) Sparticles in motion: analyzing compressed SUSY scenarios with a new method of event reconstruction. Phys Rev D 95(3):035031. https://doi.org/10.1103/PhysRevD.95.035031

    Article  ADS  Google Scholar 

  31. Jackson P, Rogan C (2017) Recursive Jigsaw reconstruction: HEP event analysis in the presence of kinematic and combinatoric ambiguities. Phys Rev D 96(11):112007. https://doi.org/10.1103/PhysRevD.96.112007

    Article  ADS  Google Scholar 

  32. An H, Wang L-T (2015) Opening up the compressed region of top squark searches at 13 TeV LHC. Phys Rev Lett 115:181602. https://doi.org/10.1103/PhysRevLett.115.181602

    Article  ADS  Google Scholar 

  33. Macaluso S et al (2016) Revealing compressed stops using high-momentum recoils. JHEP 03:151. https://doi.org/10.1007/JHEP03(2016)151

    Article  ADS  Google Scholar 

  34. Chamseddine AH, Arnowitt RL, Nath P (1982) Locally supersymmetric grand unification. Phys Rev Lett 49:970. https://doi.org/10.1103/PhysRevLett.49.970

    Article  ADS  Google Scholar 

  35. Barbieri R, Ferrara S, Savoy CA (1982) Gauge models with Spontaneously Broken local supersymmetry. Phys Lett B 119:343. https://doi.org/10.1016/0370-2693(82)90685-2

    Article  ADS  Google Scholar 

  36. Kane Gordon L et al (1994) Study of constrained minimal supersymmetry. Phys Rev D 49:6173–6210. https://doi.org/10.1103/PhysRevD.49.6173

    Article  ADS  Google Scholar 

  37. Collaboration ATLAS (2016) Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s} = 13\) TeV \(pp\) collisions with the ATLAS detector. Phys Rev D 94:052009. https://doi.org/10.1103/PhysRevD.94.052009

    Article  ADS  Google Scholar 

  38. Fletcher GT (2015) Multijet background estimation ForSUSYSearches and particle flow offline reconstruction using the ATLAS Detector at the LHC. PhD thesis. SheffieldU, Mar 2015. http://inspirehep.net/record/1429579/files/fulltext_1Du5ll.pdf

  39. Aad et al G (2009) Expected performance of the ATLAS experiment—detector, trigger and physics (2009). arXiv:0901.0512 [hep-ex]

  40. ATLAS Collaboration (2013) Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \(4.7 {\rm fb}^{-1}\) of \(\sqrt{s} = 7\) TeV proton-proton collision data. Phys Rev D 87:012008. https://doi.org/10.1103/PhysRevD.87.012008

  41. Schreyer M, Redelbach A, Ströhmer R (2015) Search for supersymmetry in events containing light leptons, jets and missing transverse momentum in \(\sqrt{s} = 8\) TeV \(pp\) collisions with the ATLAS detector. Presented 25 Sep 2015. June 2015. https://cds.cern.ch/record/2055513

  42. Nachman B, Lester CG (2013) Significance Variables. Phys Rev D88.7:075013. https://doi.org/10.1103/PhysRevD.88.075013

  43. Collaboration ATLAS (2015) Jet energy measurement and its systematic uncertainty in proton-proton collisions at \(\sqrt{s} = 7\) TeV with the ATLAS detector. Eur Phys J C 75:17. https://doi.org/10.1140/epjc/s10052-014-3190-y

    Article  Google Scholar 

  44. Collaboration ATLAS (2013) Jet energy resolution in proton-proton collisions at \(\sqrt{s} = 7\) TeV recorded in, (2010) with the ATLAS detector. Eur. Phys J C 73:2306. https://doi.org/10.1140/epjc/s10052-013-2306-0

    Article  Google Scholar 

  45. Collaboration ATLAS (2016) Performance of b-jet identification in the ATLAS experiment. JINST 11:P04008. https://doi.org/10.1088/1748-0221/11/04/P04008

    Article  Google Scholar 

  46. ATLAS Collaboration (2016) Optimisation of the ATLAS b-tagging performance for the 2016 LHC run. ATL-PHYS-PUB-2016-012. https://cds.cern.ch/record/2160731

  47. Collaboration ATLAS (2017) Reconstruction of primary vertices at the ATLAS experiment in run 1 proton-proton collisions at the LHC. Eur Phys J C 77:332. https://doi.org/10.1140/epjc/s10052-017-4887-5

    Article  Google Scholar 

  48. ATLAS Collaboration (2018) Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at \(\sqrt{s} = 13\) TeV. arXiv:1802.08168 [hep-ex]

  49. ATLAS Collaboration (2013) Pile-up subtraction and suppression for jets in ATLAS. ATLAS-CONF-2013-083. https://cds.cern.ch/record/1570994

  50. ATLAS Collaboration (2014) Tagging and suppression of pileup jets with the ATLAS detector. ATLAS-CONF-2014-018. https://cds.cern.ch/record/1700870

  51. ATLAS Collaboration (2016) Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data. arXiv:1606.01813 [hep-ex]

  52. Gleisberg et al T (2009) Event generation with SHERPA 1.1. JHEP 02:007. https://doi.org/10.1088/1126-6708/2009/02/007

    Article  Google Scholar 

  53. Bahr M et al (2008) Herwig++ physics and manual. Eur Phys J C 58:639–707. https://doi.org/10.1140/epjc/s10052-008-0798-9

    Article  ADS  Google Scholar 

  54. Mrenna S, Richardson P (2004) Matching matrix elements and parton showers with HERWIG and PYTHIA. JHEP 05:040. https://doi.org/10.1088/1126-6708/2004/05/040. arXiv:hep-ph/0312274 [hep-ph]

    Article  Google Scholar 

  55. Alwall J et al (2007) A standard format for Les Houches event files. Comput Phys Commun 176:300–304. https://doi.org/10.1016/j.cpc.2006.11.010

    Article  ADS  Google Scholar 

  56. Gioacchino R (2012) The Profile likelihood ratio and the look elsewhere effect in high energy physics. Nucl Instrum Methods A661:77–85. https://doi.org/10.1016/j.nima.2011.09.047

    Article  Google Scholar 

  57. Verkerke W, Kirkby DP (2003) The RooFit toolkit for data modeling. eConf C0303241:MOLT007. [physics]

    Google Scholar 

  58. Moneta L et al (2010) The roostats project. PoS ACAT2010 :057. arXiv:1009.1003 [physics.data-an]

  59. Cranmer K et al (2012) HistFactory: a tool for creating statistical models for use with RooFit and RooStats

    Google Scholar 

  60. Baak M et al (2014) HistFitter software framework for statistical data analysis. arXiv:1410.1280 [hep-ex]

  61. ATLAS Collaboration (2011) Procedure for the LHC Higgs boson search combination in summer 2011. ATL-PHYS-PUB-2011-011. https://cds.cern.ch/record/1375842

  62. Cowan G et al (2011) Asymptotic formulae for likelihood-based tests of new physics. Eur Phys J C 71:1554. https://doi.org/10.1140/epjc/s10052-011-1554-0

    Article  ADS  Google Scholar 

  63. Junk T (1999) Confidence level computation for combining searches with small statistics. Nucl Instrum Methods A434:435–443. https://doi.org/10.1016/S0168-9002(99)00498-2

    Article  ADS  Google Scholar 

  64. Read AL (2002) Presentation of search results: the CL(s) technique. J Phys G28:2693–2704. https://doi.org/10.1088/0954-3899/28/10/313

    Article  ADS  Google Scholar 

  65. Read AL (2000) Modified frequentist analysis of search results (The CL(s) method). In: Proceedings of the workshop on confidence limits, CERN, Geneva, Switzerland, 17-18 Jan 2000, pp. 81–101. http://weblib.cern.ch/abstract?CERN-OPEN-2000-205

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Maximilian Köhler .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Köhler, N.M. (2019). The Search for the Light Top Squark. In: Searches for the Supersymmetric Partner of the Top Quark, Dark Matter and Dark Energy at the ATLAS Experiment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25988-4_11

Download citation

Publish with us

Policies and ethics