Advertisement

Different Types of Discrete-Time and Discrete-Space Dynamical Systems

  • Kuize ZhangEmail author
  • Lijun Zhang
  • Lihua Xie
Chapter
Part of the Communications and Control Engineering book series (CCE)

Abstract

In this chapter, we introduce basic concepts and properties of discrete-time and discrete-space dynamical systems which will be discussed in this book, including Boolean control networks, nondeterministic finite-transition systems, finite automata, labeled Petri nets, and cellular automata.

References

  1. Akutsu T (2018) Algorithms for analysis, inference, and control of boolean networks. World Scientific, SingaporeGoogle Scholar
  2. Akutsu T et al (2007) Control of Boolean networks: hardness results and algorithms for tree structured networks. J Theor Biol 244(4):670–679MathSciNetCrossRefGoogle Scholar
  3. Alur R, Courcoubetis C, Yannakakis M (1995) Distinguishing tests for nondeterministic and probabilistic machines. In: Proceedings of the twenty-seventh annual ACM symposium on theory of computing. STOC ’95. ACM, Las Vegas, Nevada, USA, pp 363–372Google Scholar
  4. Baier C, Katoen JP (2008) Principles of model checking. The MIT Press, CambridgeGoogle Scholar
  5. Belta C, Yordanov B, Gol EA (2017) Formal methods for discrete-time dynamical systems. Springer International Publishing AG, BerlinCrossRefGoogle Scholar
  6. Cassandras CG, Lafortune S (2010) Introduction to discrete event systems, 2nd edn. Springer Publishing Company, Incorporated, BerlinGoogle Scholar
  7. Ceccherini-Silberstein T, Coornaert M (2010) Cellular automata and groups. Springer monographs in mathematics. Springer, BerlinCrossRefGoogle Scholar
  8. Cheng D (2001) Semi-tensor product of matrices and its application to Morgen’s problem. Sci China Ser: Inf Sci 44(3):195–212MathSciNetzbMATHGoogle Scholar
  9. Cheng D, Qi H (2009) Controllability and observability of Boolean control networks. Automatica 45(7):1659–1667MathSciNetCrossRefGoogle Scholar
  10. Cheng D, Qi H, Li Z (2011) Analysis and control of Boolean networks: a semi-tensor product approach. Springer, LondonCrossRefGoogle Scholar
  11. Esparza J (1998) Decidability and complexity of Petri net problems - an introduction. In: Reisig W, Rozenberg G (eds) Lectures on petri nets i: basic models: advances in petri nets. Springer, Berlin, pp 374–428CrossRefGoogle Scholar
  12. Fauré A et al (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. In: Bioinformatics 22(14):e124CrossRefGoogle Scholar
  13. Giua A, Silva M (2017) Modeling, analysis and control of discrete event systems: a petri net perspective. IFAC-PapersOnLine 50(1):1772–1783CrossRefGoogle Scholar
  14. Hack M (1976) Petri net languages. Technical report. Cambridge, MA, USAGoogle Scholar
  15. Hadeler KP, Müller J (2017) Cellular automata: analysis and applications. Springer monographs in mathematics. Springer, ChamCrossRefGoogle Scholar
  16. Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3(4):320–375MathSciNetCrossRefGoogle Scholar
  17. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2(1):343–372CrossRefGoogle Scholar
  18. Kari J (2016) Cellular automata. http://users.utu.fi/jkari/ca2016/
  19. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467MathSciNetCrossRefGoogle Scholar
  20. Kloetzer M, Belta C (2008) A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans Autom Control 53(1):287–297MathSciNetCrossRefGoogle Scholar
  21. Kunz W, Stoffel D (1997) Reasoning in Boolean networks. Springer, BostonCrossRefGoogle Scholar
  22. Lee D, Yannakakis M (1994) Testing finite-state machines: state identification and verification. IEEE Trans Comput 43(3):306–320MathSciNetCrossRefGoogle Scholar
  23. Li Z, Zhou M (2009) Deadlock resolution in automated manufacturing systems: a novel petri net approach. 1st edn. Springer Publishing Company, Incorporated, BerlinGoogle Scholar
  24. Lin H (2014) Mission accomplished: an introduction to formal methods in mobile robot motion planning and control. Unmanned Syst 02(02):201–216CrossRefGoogle Scholar
  25. Lin H, Antsaklis PJ (2014) Hybrid dynamical systems: an introduction to control and verification. Found Trends Syst Control 1(1):1–172CrossRefGoogle Scholar
  26. Moody JO, Antsaklis PJ (1998) Supervisory control of discrete event systems using petri nets. Kluwer Academic Publishers, NorwellCrossRefGoogle Scholar
  27. Moore EF (1956) Gedanken-experiments on sequential machines. Autom Stud, Ann Math Stud 34:129–153Google Scholar
  28. von Neumann J, Burks AW (1966) Theory of self-reproducing automata. University of Illinois Press, ChampaignGoogle Scholar
  29. Petri CA (1962) Kommunikation mit Automaten. PhD thesis. University of BonnGoogle Scholar
  30. Pickover CA (2012) The math book: from pythagoras to the 57th dimension, 250 milestones in the history of mathematics. Sterling Milestones, SterlingzbMATHGoogle Scholar
  31. Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM J Control Optim 25(1):206–230MathSciNetCrossRefGoogle Scholar
  32. Reutenauer C (1990) The mathematics of petri nets. Prentice-Hall Inc, Upper Saddle RiverzbMATHGoogle Scholar
  33. Reveliotis SA (2017) Logical control of complex resource allocation systems. Now Publishers Inc, BostonCrossRefGoogle Scholar
  34. Richardson D (1972) Tessellations with local transformations. J Comput Syst Sci 6(5):373–388MathSciNetCrossRefGoogle Scholar
  35. Rosin DP (2015) Dynamics of complex autonomous Boolean networks. Springer International Publishing, BerlinzbMATHGoogle Scholar
  36. Seatzu C, Silva M, van Schuppen J (ed) (2013) Control of discrete-event systems: automata and petri-net perspectives. Lecture notes in control and information sciences, vol 433. Springer, London, p 478Google Scholar
  37. Shmulevich I, Dougherty ER (2010) Probabilistic Boolean networks: the modeling and control of gene regulatory networks. SIAMGoogle Scholar
  38. Sipser M (1996) Introduction to the Theory of Computation, 1st edn. International Thomson Publishing, StamfordCrossRefGoogle Scholar
  39. Sridharan S et al (2012) Boolean modeling and fault diagnosis in oxidative stress response. In: BMC genomics 13(Suppl 6), S4:1–16CrossRefGoogle Scholar
  40. Stockmeyer LJ, Meyer AR (1973) Word problems requiring exponential time (preliminary report). In: Proceedings of the fifth annual ACM symposium on theory of computing. STOC’73. ACM, New York, NY, USA, pp 1–9Google Scholar
  41. Tabuada P (2009) Verification and control of hybrid systems: a symbolic approach. 1st edn. Springer Publishing Company, Incorporated, BerlinCrossRefGoogle Scholar
  42. Waldrop MM (1993) Complexity: the emerging science at the edge of order and chaos. Simon & SchusterGoogle Scholar
  43. Wonham WM, Cai K (2019) Supervisory control of discrete-event systems. Springer International Publishing, BerlinCrossRefGoogle Scholar
  44. Zhao Y, Qi H, Cheng D (2010) Input-state incidence matrix of Boolean control networks and its applications. Syst Control Lett 59(12):767–774MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceKTH Royal Institute of TechnologyStockholmSweden
  2. 2.School of Marine Science and TechnologyNorthwestern Polytechnical UniversityXi’anChina
  3. 3.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations