Skip to main content

Non-polyhedral Extensions of the Frank and Wolfe Theorem

  • Chapter
  • First Online:
Splitting Algorithms, Modern Operator Theory, and Applications

Abstract

In 1956 Marguerite Frank and Paul Wolfe proved that a quadratic function which is bounded below on a polyhedron P attains its infimum on P. In this work we search for larger classes of sets F with this Frank-and-Wolfe property. We establish the existence of non-polyhedral Frank-and-Wolfe sets, obtain internal characterizations by way of asymptotic properties, and investigate stability of the Frank-and-Wolfe class under various operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andronov, V., Belousov, E., Shironin, V.: On solvability of the problem of polynomial programming (in Russian). Izvestija Akadem. Nauk SSSR, Tekhnicheskaja Kibernetika 4, 194–197 (1982). Translated as News of the Academy of Science of USSR, Dept. of Technical Sciences, Technical Cybernetics.

    Google Scholar 

  2. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear parametric optimization. Birkhäuser, Basel-Boston-Stuttgart (1983)

    Google Scholar 

  3. Belousov, E.: Introduction to Convex Analysis and Integer Programming (in Russian). Moscow University Publisher (1977)

    Google Scholar 

  4. Belousov, E., Klatte, D.: A Frank-Wolfe theorem for convex polynomial programs. Comput. Optim. Appl. 22(1), 37–48 (2002)

    Article  MathSciNet  Google Scholar 

  5. Blum, E., Oettli, W.: Direct proof of the existence theorem in quadratic programming. Operations Research 20, 165–167 (1972)

    Article  MathSciNet  Google Scholar 

  6. Collatz, L., Wetterling, W.: Optimization Problems. Springer Verlag (1975)

    Google Scholar 

  7. Eaves, B.: On quadratic programming. Management Sci. 17(11), 698–711 (1971)

    Article  Google Scholar 

  8. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research Logistics Quarterly 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  9. Goberna, M.A., González, E., Martínez-Legaz, J.E., Todorov, M.I.: Motzkin decomposition of closed convex sets. J Math. Anal. Appl. 364, 209–221 (2010)

    Article  MathSciNet  Google Scholar 

  10. Iusem, A.N., Martínez-Legaz, J.E., Todorov, M.I.: Motzkin predecomposable sets. J. Global Optim. 60(4), 635–647 (2014)

    Article  MathSciNet  Google Scholar 

  11. Klee, V.: Asymptotes and projections of convex sets. Math. Scand. 8, 356–362 (1960)

    Article  MathSciNet  Google Scholar 

  12. Kummer., B.: Globale Stabilität quadratischer Optimierungsprobleme. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Math.-Nat. R. XXVI(5), 565–569 (1977)

    Google Scholar 

  13. Liu, M., Pataki, G.: Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming. Math. Prog. 167, 435–480 (2018)

    Article  MathSciNet  Google Scholar 

  14. Luo, Z.Q., Zhang, S.: On extensions of the Frank-Wolfe theorems. Comput. Optim. Appl. 13, 87–110 (1999)

    Article  MathSciNet  Google Scholar 

  15. Martínez-Legaz, J.E., Noll, D., Sosa, W.: Minimization of quadratic functions on convex sets without asymptotes. Journal of Convex Analysis 25, 623–641 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Mirkil, H.: New characterizations of polyhedral cones. Can. J. Math. 9, 1–4 (1957)

    Article  MathSciNet  Google Scholar 

  17. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)

    Google Scholar 

  18. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons (1986)

    Google Scholar 

  19. Tam, N.N.: Continuity of the optimal value function in indefinite quadratic programming. J. Global Optim. 23(1), 43–61 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Helpful discussions with B. Kummer (HU Berlin) and D. Klatte (Zürich) are gratefully acknowledged. We are indebted to Vera Roshchina (Australia) for having pointed out reference [16]. J.E. Martínez-Legaz was supported by the MINECO of Spain, Grant MTM2014-59179-C2-2-P, and by the Severo Ochoa Programme for Centres of Excellence in R&D [SEV-2015-0563]. He is affiliated with MOVE (Markets, Organizations and Votes in Economics). D. Noll was supported by Fondation Mathématiques Jacques-Hadamard (FMJH) under PGMO Grant Robust Optimization for Control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominikus Noll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Legaz, J.E., Noll, D., Sosa, W. (2019). Non-polyhedral Extensions of the Frank and Wolfe Theorem. In: Bauschke, H., Burachik, R., Luke, D. (eds) Splitting Algorithms, Modern Operator Theory, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-25939-6_12

Download citation

Publish with us

Policies and ethics