Skip to main content

A Glimpse at Pointwise Asymptotic Stability for Continuous-Time and Discrete-Time Dynamics

  • Chapter
  • First Online:

Abstract

Given a dynamical system, pointwise asymptotic stability, also called semistability, of a set requires that every point in the set be a Lyapunov stable equilibrium, and that every solution converge to one of the equilibria in the set. This note provides examples of pointwise asymptotic stability related to optimization and states select results from the literature, focusing on necessary and sufficient Lyapunov and Lyapunov-like conditions for and robustness of this stability property. Background on the classical asymptotic stability is included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The set-valued terminology in this note follows [56]. In particular, a set-valued mapping \(F:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) associates to each \(x\in {\mathbb R}^n\), a subset \(F(x)\subset {\mathbb R}^n\).

  2. 2.

    \(F:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) is locally bounded if for every bounded set \(C\subset {\mathbb R}^n\), F(C) :=⋃xC F(x) is bounded.

  3. 3.

    \(F:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) is outer semicontinuous at \(x\in {\mathbb R}^n\) if for every x i → x and every convergent y i ∈ F(x i), limi y i ∈ F(x). F is outer semicontinuous if it is outer semicontinuous at every \(x\in {\mathbb R}^n\). If F is locally bounded and has closed (hence compact) values, outer semicontinuity at x is equivalent to a property of a set-valued F often called upper semicontinuity at x: for every ε > 0, there exists δ > 0 such that \(F(x+\delta {\mathbb B})\subset F(x)+\varepsilon {\mathbb B}\). Here, and in the remainder of this note, \({\mathbb B}\subset {\mathbb R}^n\) is a closed unit ball centered at 0; \(x+\delta {\mathbb B}\) is the closed ball of radius δ centered at x; and \(F(x)+\varepsilon {\mathbb B}\) is the Minkowski sum of F(x) and \(\varepsilon {\mathbb B}\), i.e., \(\{y+z\, |\, y\in F(x),\ z\in \varepsilon {\mathbb B}\}\).

  4. 4.

    \(\overline { \mathop {\mathrm {con}}} f(x+\delta {\mathbb B})\) is the closure of the convex hull of \(f(x+\delta {\mathbb B})\), i.e., of the smallest convex set containing \(f(x+\delta {\mathbb B})\).

  5. 5.

    A square matrix M is stable, or Hurwitz, if all of its eigenvalues have negative real parts. For such a matrix and a linear differential equation \(\dot {x}=Mx\), the origin is not just (Lyapunov) stable but also attractive, and hence asymptotically stable.

  6. 6.

    A set-valued mapping \(M:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) is monotone if for every \(x,x'\in {\mathbb R}^n\), every v ∈ M(x), v′∈ M(x′), one has (x − x′) ⋅ (v − v′) ≥ 0. It is maximal monotone if it is monotone and its graph, \(\{(x,v)\in {\mathbb R}^{2n}\, |\, v\in M(x)\}\), cannot be enlarged without violating monotonicity. In particular, a linear M given by M(x) = Lx is monotone if and only if L is positive semidefinite, and if such M is monotone then it is maximal monotone.

  7. 7.

    For a set-valued mapping \(M:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\), its effective domain, denoted \({ \mathop {\mathrm {dom}} \nolimits } M\), is the set \(\{x\in {\mathbb R}^n\, |\, M(x)\neq \emptyset \}\).

  8. 8.

    A monotone \(M:{\mathbb R}^n\rightrightarrows {\mathbb R}^n\) is strictly monotone if for every \(x,x'\in {\mathbb R}^n\) with x ≠ x′, every v ∈ M(x), v′∈ M(x′), one has (x − x′) ⋅ (v − v′) > 0, and strongly monotone if there exists ρ > 0 such that, for every \(x,x'\in {\mathbb R}^n\), every v ∈ M(x), v′∈ M(x′), one has (x − x′) ⋅ (v − v′) ≥ ρx − x′2.

  9. 9.

    In systems theory, a system where ∥ϕ(t) − ψ(t)∥ is eventually decreasing to 0, for all solutions, often with appropriately understood uniform decrease rate over ∥ϕ(0) − ψ(0)∥ is called incrementally stable, see [3] and the references therein, and contractive if ∥ϕ(t) − ψ(t)∥ is decreasing, often at an exponential rate, see [2]. For applications of the contractive property, not related to monotonicity of the dynamics, see the survey [2] and the references therein.

  10. 10.

    A function \(f:{\mathbb R}^n\to {\mathbb R}\cup \{\infty \}\) is proper if it is not identically equal to and lsc if, for every \(x\in {\mathbb R}^n\) and every x i → x, liminfi f(x i) ≥ f(x). A useful condition, equivalent to f being proper, lsc, and convex is that the epigraph of f, namely the set \(\{(x,r)\in {\mathbb R}^n\, |\, r=f(x)\}\) be nonempty, closed, and convex.

  11. 11.

    The normal cone to a closed and convex set \(C\subset {\mathbb R}^n\) at x ∈ C is \(N_C(x)=\{v\in {\mathbb R}^n\, |\, v\cdot (x'-x)\leq 0\ \forall x'\in C\}\).

  12. 12.

    For a function \(f:{\mathbb R}^n\to {\mathbb R}\cup \{\infty \}\), \({ \mathop {\mathrm {dom}} \nolimits } f\) is the effective domain of f, i.e., the set \(\{x\in {\mathbb R}^n\, |\, f(x)\in {\mathbb R}\}\).

References

  1. Aizicovici, S., Reich, S., Zaslavski, A.: Minimizing convex functions by continuous descent methods. Electron. J. Differential Equations (19) (2010)

    Google Scholar 

  2. Aminzare, Z., Sontag, E.: Contraction methods for nonlinear systems: a brief introduction and some open problems. In: Proc. 53rd IEEE Conference on Decision and Control (2014)

    Google Scholar 

  3. Angeli, D.: A Lyapunov approach to the incremental stability properties. IEEE Trans. Automat. Control 47(3), 410–421 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. 7(11), 1163–1173 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Cabot, A., Czarnecki, M.O.: Asymptotic behavior of nonautonomous monotone and subgradient evolution equations. Trans. Amer. Math. Soc. 370(2), 755–790 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Attouch, H., Garrigos, G., Goudou, X.: A dynamic gradient approach to Pareto optimization with nonsmooth convex objective functions. J. Math. Anal. Appl. 422(1), 741–771 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag (1984)

    Google Scholar 

  8. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, Lecture Notes in Control and Information Sciences, vol. 267. Springer Verlag (2001)

    Google Scholar 

  9. Baillon, J., Cominetti, R.: A convergence result for nonautonomous subgradient evolution equations and its application to the steepest descent exponential penalty trajectory in linear programming. J. Funct. Anal. 187(2), 263–273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbašin, E., Krasovskiı̆, N.: On stability of motion in the large. Doklady Akad. Nauk SSSR (N.S.) 86, 453–456 (1952)

    Google Scholar 

  11. Bauschke, H., Borwein, J., Lewis, A.: The method of cyclic projections for closed convex sets in Hilbert space. In: Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), Contemp. Math., vol. 204, pp. 1–38. Amer. Math. Soc., Providence, RI (1997)

    Google Scholar 

  12. Bhat, S., Bernstein, D.: Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria. SIAM J. Control Optim. 42(5), 1745–1775 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bhat, S., Bernstein, D.: Arc-length-based Lyapunov tests for convergence and stability with applications to systems having a continuum of equilibria. Math. Control Signals Systems 22(2), 155–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brézis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In: Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pp. 101–156. Academic Press, New York (1971)

    Google Scholar 

  15. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973)

    Google Scholar 

  16. Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Systems Control Lett. 55(1), 45–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bruck, R.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18, 15–26 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burachik, R., Iusem, A.: Set-valued mappings and enlargements of monotone operators, Springer Optimization and Its Applications, vol. 8. Springer, New York (2008)

    Google Scholar 

  19. Campbell, S., Rose, N.: Singular perturbation of autonomous linear systems. SIAM J. Math. Anal. 10(3), 542–551 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chbani, Z., Riahi, H.: Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evol. Equ. Control Theory 3(1), 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chellaboina, V., Bhat, S., Haddad, W., Bernstein, D.: Modeling and analysis of mass-action kinetics: nonnegativity, realizability, reducibility, and semistability. IEEE Control Syst. Mag. 29(4), 60–78 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Choudhary, R.: Generic convergence of a convex Lyapounov function along trajectories of nonexpansive semigroups in Hilbert space. J. Nonlinear Convex Anal. 7(2), 245–268 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Clarke, F., Ledyaev, Y., Stern, R.: Asymptotic stability and smooth Lyapunov functions. J. Diff. Eq. 149(1), 69–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Combettes, P.: Quasi-Fejérian analysis of some optimization algorithms. In: Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), Stud. Comput. Math., vol. 8, pp. 115–152. North-Holland, Amsterdam (2001)

    Google Scholar 

  25. Combettes., P.: Fejér monotonicity in convex optimization. In: Encyclopedia of Optimization, second edn., pp. 1016–1024. Springer, New York (2009)

    Google Scholar 

  26. Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Kluwer (1988)

    Google Scholar 

  27. Goebel, R.: Set-valued Lyapunov functions for difference inclusions. Automatica 47(1), 127–132 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goebel, R.: Robustness of stability through necessary and sufficient Lyapunov-like conditions for systems with a continuum of equilibria. Systems Control Lett. 65, 81–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Goebel, R.: Stability and robustness for saddle-point dynamics through monotone mappings. Systems Control Lett. 108, 16–22 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Goebel, R., Sanfelice, R.: Applications of convex analysis to consensus algorithms, pointwise asymptotic stability, and its robustness. In: Proc. 57th IEEE Conference on Decision and Control (2018). Accepted

    Google Scholar 

  31. Goebel, R., Sanfelice, R.: Pointwise Asymptotic Stability in a Hybrid System and Well-Posed Behavior Beyond Zeno. SIAM J. Control Optim. 56(2), 1358–1385 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Goebel, R., Sanfelice, R.: A unifying convex analysis and switching system approach to consensus with undirected communication graphs (2018). Submitted, https://arxiv.org/abs/1808.00989

  33. Goebel, R., Sanfelice, R., Teel, A.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press (2012)

    Google Scholar 

  34. Haddad, W., Chellaboina, V.: Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. Nonlinear Anal. Real World Appl. 6(1), 35–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hájek, O.: Discontinuous differential equations, I. J. Diff. Eq. 32, 149–170 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Henry, C.: An existence theorem for a class of differential equations with multivalued right-hand side. J. Math. Anal. Appl. 41, 179–186 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hermes, H.: Discontinuous vector fields and feedback control. In: Differential Equations and Dynamical Systems, pp. 155–165. Academic Press (1967)

    Google Scholar 

  38. Hui, Q., Haddad, W., Bhat, S.: Finite-time semistability and consensus for nonlinear dynamical networks. IEEE Trans. Automat. Control 53(8), 1887–1900 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hui, Q., Haddad, W., Bhat, S.: Semistability, finite-time stability, differential inclusions, and discontinuous dynamical systems having a continuum of equilibria. IEEE Trans. Automat. Control 54(10), 2465–2470 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kellett, C.: Classical converse theorems in Lyapunov’s second method. Discrete Contin. Dyn. Syst. Ser. B 20(8), 2333–2360 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kellett, C., Teel, A.: Smooth Lyapunov functions and robustness of stability for difference inclusions. Systems & Control Letters 52, 395–405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kellett, C., Teel, A.: On the robustness of \(\mathcal {K}\mathcal {L}\)-stability for difference inclusions: Smooth discrete-time Lyapunov functions. SIAM J. Control Optim. 44(3), 777–800 (2005)

    Google Scholar 

  43. Krasovskii, N., Subbotin, A.: Game-theoretical control problems. Springer-Verlag, New York (1988)

    Book  Google Scholar 

  44. LaSalle, J.P.: An invariance principle in the theory of stability. In: Differential equations and dynamical systems. New York: Academic Press (1967)

    Google Scholar 

  45. Liberzon, D.: Switching in Systems and Control. Systems and Control: Foundations and Applications. Birkhauser (2003)

    Google Scholar 

  46. Lyapunov, A.M.: The general problem of the stability of motion. Internat. J. Control 55(3), 521–790 (1992). Translated by A. T. Fuller from Édouard Davaux’s French translation (1907) of the 1892 Russian original.

    Google Scholar 

  47. Maschler, M., Peleg, B.: Stable sets and stable points of set-valued dynamic systems with applications to game theory. SIAM J. Control Optimization 14(6), 985–995 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  48. Miglierina, E.: Slow solutions of a differential inclusion and vector optimization. Set-Valued Anal. 12(3), 345–356 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Control 50(2), 169–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nedić, A., Ozdaglar, A., Parrilo, P.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55(4), 922–938 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Oh, J., Drincic, B., Bernstein, D.: Nonlinear feedback models of hysteresis. IEEE Control Syst. Mag. 29(1), 100–119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica J. IFAC 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

    Article  MATH  Google Scholar 

  54. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17(3–4), 1113–1163 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Rockafellar, R.: Convex Analysis. Princeton University Press (1970)

    Google Scholar 

  56. Rockafellar, R., Wets, R.J.B.: Variational Analysis. Springer (1998)

    Google Scholar 

  57. Sabach, S.: Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces. SIAM J. Optim. 21(4), 1289–1308 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sanfelice, R., Goebel, R., Teel, A.: Generalized solutions to hybrid dynamical systems. ESAIM Control Optim. Calc. Var. 14, 699–724 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shi, G., Proutiere, A., Johansson, K.: Network synchronization with convexity. SIAM J. Control Optim. 53(6), 3562–3583 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Smirnov, G.: Introduction to the theory of differential inclusions, Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  61. Teel, A., Praly, L.: A smooth Lyapunov function from a class-\({\mathcal {K}\mathcal {L}}\) estimate involving two positive semidefinite functions. ESAIM Control Optim. Calc. Var. 5, 313–367 (2000)

    Google Scholar 

  62. Venets, V.: A continuous algorithm for finding the saddle points of convex-concave functions. Avtomat. i Telemekh. (1), 42–47 (1984)

    MathSciNet  MATH  Google Scholar 

  63. Venets, V.: Continuous algorithms for solution of convex optimization problems and finding saddle points of convex-concave functions with the use of projection operations. Optimization 16(4), 519–533 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  64. Zangwill, W.: Nonlinear programming: a unified approach. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1969)

    MATH  Google Scholar 

  65. Zaslavski, A.: Convergence of a proximal point method in the presence of computational errors in Hilbert spaces. SIAM J. Optim. 20(5), 2413–2421 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Simons Foundation Grant 315326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Goebel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goebel, R. (2019). A Glimpse at Pointwise Asymptotic Stability for Continuous-Time and Discrete-Time Dynamics. In: Bauschke, H., Burachik, R., Luke, D. (eds) Splitting Algorithms, Modern Operator Theory, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-25939-6_10

Download citation

Publish with us

Policies and ethics