Advertisement

Monogenic Forms of Diabetes Mellitus

  • Zsolt Gaál
  • István BaloghEmail author
Chapter
Part of the Experientia Supplementum book series (EXS, volume 111)

Abstract

In addition to the common types of diabetes mellitus, two major monogenic diabetes forms exist. Maturity-onset diabetes of the young (MODY) represents a heterogenous group of monogenic, autosomal dominant diseases. MODY accounts for 1–2% of all diabetes cases, and it is not just underdiagnosed but often misdiagnosed to type 1 or type 2 diabetes. More than a dozen MODY genes have been identified to date, and their molecular classification is of great importance in the correct treatment decision and in the judgment of the prognosis. The most prevalent subtypes are HNF1A, GCK, and HNF4A. Genetic testing for MODY has changed recently due to the technological advancements, as contrary to the sequential testing performed in the past, nowadays all MODY genes can be tested simultaneously by next-generation sequencing. The other major group of monogenic diabetes is neonatal diabetes mellitus which can be transient or permanent, and often the diabetes is a part of a syndrome. It is a severe monogenic disease appearing in the first 6 months of life. The hyperglycemia usually requires insulin. There are two forms, permanent neonatal diabetes mellitus (PNDM) and transient neonatal diabetes mellitus (TNDM). In TNDM, the diabetes usually reverts within several months but might relapse later in life. The incidence of NDM is 1:100,000–1:400,000 live births, and PNDM accounts for half of the cases. Most commonly, neonatal diabetes is caused by mutations in KCNJ11 and ABCC8 genes encoding the ATP-dependent potassium channel of the β cell. Neonatal diabetes has experienced a quick and successful transition into the clinical practice since the discovery of the molecular background. In case of both genetic diabetes groups, recent guidelines recommend genetic testing.

Keywords

Maturity-onset diabetes of the young Neonatal diabetes mellitus Autosomal dominant 

List of Abbreviations

CEL

Carboxyl ester lipase

CRP

C-reactive protein

GCK

Glucokinase

GDM

Gestational diabetes mellitus

HNF1A

Hepatocyte nuclear factor 1A

HNF1B

Hepatocyte nuclear factor 1B

HNF4A

Hepatocyte nuclear factor 4A

MODY

Maturity-onset diabetes of the young

NDM

Neonatal diabetes mellitus

NGS

Next-generation sequencing

OMIM

Online Mendelian Inheritance in Man

PNDM

Permanent neonatal diabetes mellitus

TNDM

Transient neonatal diabetes mellitus

References

  1. Abdel-Salam GM, Schaffer AE, Zaki MS, Dixon-Salazar T, Mostafa IS, Afifi HH, Gleeson JG (2012) A homozygous IER3IP1 mutation causes microcephaly with simplified gyral pattern, epilepsy, and permanent neonatal diabetes syndrome (MEDS). Am J Med Genet A 158A:2788–2796.  https://doi.org/10.1002/ajmg.a.35583 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adalat S, Woolf AS, Johnstone KA et al (2009) HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol 20:1123–1131.  https://doi.org/10.1681/ASN.2008060633 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H (1998) Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 12:1763–1768CrossRefGoogle Scholar
  4. Ajjan RA, Owen KR (2014) Glucokinase MODY and implications for treatment goals of common forms of diabetes. Curr Diab Rep 14:559.  https://doi.org/10.1007/s11892-014-0559-0 CrossRefPubMedGoogle Scholar
  5. Allen HL, Flanagan SE, Shaw-Smith C et al (2011) GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44:20–22.  https://doi.org/10.1038/ng.1035 CrossRefPubMedPubMedCentralGoogle Scholar
  6. American Diabetes A (2019) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes Care 42:S13–S28.  https://doi.org/10.2337/dc19-S002 CrossRefGoogle Scholar
  7. Ang SF, Lim SC, Tan CS et al (2016) A preliminary study to evaluate the strategy of combining clinical criteria and next generation sequencing (NGS) for the identification of monogenic diabetes among multi-ethnic Asians. Diabetes Res Clin Pract 119:13–22.  https://doi.org/10.1016/j.diabres.2016.06.008 CrossRefPubMedGoogle Scholar
  8. Anik A, Catli G, Abacı A et al (2015) Molecular diagnosis of maturity-onset diabetes of the young (MODY) in Turkish children by using targeted next-generation sequencing. J Pediatr Endocrinol Metab 28:1265–1271.  https://doi.org/10.1515/jpem-2014-0430 CrossRefPubMedGoogle Scholar
  9. Appel S, Filter M, Reis A et al (2002) Physical and transcriptional map of the critical region for keratolytic winter erythema (KWE) on chromosome 8p22-p23 between D8S550 and D8S1759. Eur J Hum Genet 10:17–25.  https://doi.org/10.1038/sj.ejhg.5200750 CrossRefPubMedGoogle Scholar
  10. Babenko AP, Polak M, Cavé H et al (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355:456–466.  https://doi.org/10.1056/NEJMoa055068 CrossRefPubMedGoogle Scholar
  11. Bacon S, Kyithar MP, Rizvi SR et al (2016) Successful maintenance on sulphonylurea therapy and low diabetes complication rates in a HNF1A-MODY cohort. Diabet Med 33:976–984.  https://doi.org/10.1111/dme.12992 CrossRefPubMedGoogle Scholar
  12. Balboa D, Saarimäki-Vire J, Borshagovski D et al (2018) Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife 7.  https://doi.org/10.7554/eLife.38519
  13. Bansal V, Gassenhuber J, Phillips T et al (2017) Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med 15:213.  https://doi.org/10.1186/s12916-017-0977-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Beards F, Frayling T, Bulman M et al (1998) Mutations in hepatocyte nuclear factor 1beta are not a common cause of maturity-onset diabetes of the young in the UK. Diabetes 47:1152–1154CrossRefGoogle Scholar
  15. Bellanne-Chantelot C et al (2004) Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med 140:510–517CrossRefGoogle Scholar
  16. Bellanne-Chantelot C, Chauveau D, Gautier JF et al (2005) Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes 54:3126–3132CrossRefGoogle Scholar
  17. Bellanne-Chantelot C, Carette C, Riveline JP et al (2008) The type and the position of HNF1A mutation modulate age at diagnosis of diabetes in patients with maturity-onset diabetes of the young (MODY)-3. Diabetes 57:503–508.  https://doi.org/10.2337/db07-0859 CrossRefPubMedGoogle Scholar
  18. Bennett K, James C, Mutair A, Al-Shaikh H, Sinani A, Hussain K (2011) Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene. Pediatr Diabetes 12:192–196.  https://doi.org/10.1111/j.1399-5448.2010.00683.x CrossRefPubMedGoogle Scholar
  19. Bockenhauer D, Jaureguiberry G (2016) HNF1B-associated clinical phenotypes: the kidney and beyond. Pediatr Nephrol 31:707–714.  https://doi.org/10.1007/s00467-015-3142-2 CrossRefPubMedGoogle Scholar
  20. Boesgaard TW, Pruhova S, Andersson EA et al (2010) Further evidence that mutations in INS can be a rare cause of Maturity-Onset Diabetes of the Young (MODY). BMC Med Genet 11:42.  https://doi.org/10.1186/1471-2350-11-42 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bonnefond A, Philippe J, Durand E et al (2012) Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One 7:e37423.  https://doi.org/10.1371/journal.pone.0037423 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bonnefond A, Vaillant E, Philippe J et al (2013) Transcription factor gene MNX1 is a novel cause of permanent neonatal diabetes in a consanguineous family. Diabetes Metab 39:276–280.  https://doi.org/10.1016/j.diabet.2013.02.007 CrossRefPubMedGoogle Scholar
  23. Boonen SE, Mackay DJ, Hahnemann JM et al (2013) Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care 36:505–512.  https://doi.org/10.2337/dc12-0700 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Borowiec M, Liew CW, Thompson R et al (2009) Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci U S A 106:14460–14465.  https://doi.org/10.1073/pnas.0906474106 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bowman P, Flanagan SE, Edghill EL et al (2012) Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia 55:123–127.  https://doi.org/10.1007/s00125-011-2319-x CrossRefPubMedGoogle Scholar
  26. Brahm AJ, Wang G, Wang J, McIntyre AD, Cao H, Ban MR, Hegele RA (2016) Genetic confirmation rate in clinically suspected maturity-onset diabetes of the young. Can J Diabetes 40:555–560.  https://doi.org/10.1016/j.jcjd.2016.05.010 CrossRefPubMedGoogle Scholar
  27. Brickwood S, Bonthron DT, Al-Gazali LI, Piper K, Hearn T, Wilson DI, Hanley NA (2003) Wolcott-Rallison syndrome: pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3. J Med Genet 40:685–689CrossRefGoogle Scholar
  28. Cammidge PJ (1928) Diabetes mellitus and heredity. Br Med J 2:738–741CrossRefGoogle Scholar
  29. Campbell SC, Cragg H, Elrick LJ, Macfarlane WM, Shennan KI, Docherty K (1999) Inhibitory effect of pax4 on the human insulin and islet amyloid polypeptide (IAPP) promoters. FEBS Lett 463:53–57CrossRefGoogle Scholar
  30. Capuano M, Garcia-Herrero CM, Tinto N et al (2012) Glucokinase (GCK) mutations and their characterization in MODY2 children of southern Italy. PLoS One 7:e38906.  https://doi.org/10.1371/journal.pone.0038906 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Carmody D, Naylor RN, Bell CD et al (2016) GCK-MODY in the US National Monogenic Diabetes Registry: frequently misdiagnosed and unnecessarily treated. Acta Diabetol 53:703–708.  https://doi.org/10.1007/s00592-016-0859-8 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Catli G, Abaci A, Flanagan SE et al (2013) A novel GATA6 mutation leading to congenital heart defects and permanent neonatal diabetes: a case report. Diabetes Metab 39:370–374.  https://doi.org/10.1016/j.diabet.2013.01.005 CrossRefPubMedGoogle Scholar
  33. Chakraborty C, Bandyopadhyay S, Doss CG, Agoramoorthy G (2015) Exploring the genomic roadmap and molecular phylogenetics associated with MODY cascades using computational biology. Cell Biochem Biophys 71:1491–1502.  https://doi.org/10.1007/s12013-014-0372-z CrossRefPubMedGoogle Scholar
  34. Chandra V, Albagli-Curiel O, Hastoy B et al (2014) RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human beta cells. Cell Rep 9:2206–2218.  https://doi.org/10.1016/j.celrep.2014.11.010 CrossRefPubMedGoogle Scholar
  35. Chao CS, McKnight KD, Cox KL, Chang AL, Kim SK, Feldman BJ (2015) Novel GATA6 mutations in patients with pancreatic agenesis and congenital heart malformations. PLoS One 10:e0118449.  https://doi.org/10.1371/journal.pone.0118449 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chapla A, Mruthyunjaya MD, Asha HS et al (2015) Maturity onset diabetes of the young in India – a distinctive mutation pattern identified through targeted next-generation sequencing. Clin Endocrinol (Oxf) 82:533–542.  https://doi.org/10.1111/cen.12541 CrossRefGoogle Scholar
  37. Chappell L, Gorman S, Campbell F, Ellard S, Rice G, Dobbie A, Crow Y (2008) A further example of a distinctive autosomal recessive syndrome comprising neonatal diabetes mellitus, intestinal atresias and gall bladder agenesis. Am J Med Genet A 146A:1713–1717.  https://doi.org/10.1002/ajmg.a.32304 CrossRefPubMedGoogle Scholar
  38. Chen YZ, Gao Q, Zhao XZ et al (2010) Systematic review of TCF2 anomalies in renal cysts and diabetes syndrome/maturity onset diabetes of the young type 5. Chin Med J (Engl) 123:3326–3333Google Scholar
  39. Cheng KK, Lam KS, Wu D et al (2012) APPL1 potentiates insulin secretion in pancreatic beta cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice. Proc Natl Acad Sci U S A 109:8919–8924.  https://doi.org/10.1073/pnas.1202435109 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Clissold R, Shields B, Ellard S, Hattersley A, Bingham C (2015a) Assessment of the HNF1B score as a tool to select patients for HNF1B genetic testing. Nephron 130:134–140.  https://doi.org/10.1159/000398819 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C (2015b) HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat Rev Nephrol 11:102–112.  https://doi.org/10.1038/nrneph.2014.232 CrossRefPubMedGoogle Scholar
  42. Cockburn BN, Bermano G, Boodram LL et al (2004) Insulin promoter factor-1 mutations and diabetes in Trinidad: identification of a novel diabetes-associated mutation (E224K) in an Indo-Trinidadian family. J Clin Endocrinol Metab 89:971–978.  https://doi.org/10.1210/jc.2003-031282 CrossRefPubMedGoogle Scholar
  43. Concepcion JP et al (2014) Neonatal diabetes, gallbladder agenesis, duodenal atresia, and intestinal malrotation caused by a novel homozygous mutation in RFX6. Pediatr Diabetes 15:67–72.  https://doi.org/10.1111/pedi.12063 CrossRefPubMedGoogle Scholar
  44. D’Amato E, Reh CS, Daniels M et al (2010) Genetic investigation in an Italian child with an unusual association of atrial septal defect, attributable to a new familial GATA4 gene mutation, and neonatal diabetes due to pancreatic agenesis. Diabet Med 27:1195–1200.  https://doi.org/10.1111/j.1464-5491.2010.03046.x CrossRefPubMedGoogle Scholar
  45. De Franco E, Shaw-Smith C, Flanagan SE et al (2013) Biallelic PDX1 (insulin promoter factor 1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency. Diabet Med 30:e197–e200.  https://doi.org/10.1111/dme.12122 CrossRefPubMedPubMedCentralGoogle Scholar
  46. De Franco E, Flanagan SE, Houghton JA et al (2015) The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 386:957–963.  https://doi.org/10.1016/S0140-6736(15)60098-8 CrossRefPubMedPubMedCentralGoogle Scholar
  47. De Franco E, Caswell R, Houghton JA, Iotova V, Hattersley AT, Ellard S (2017a) Analysis of cell-free fetal DNA for non-invasive prenatal diagnosis in a family with neonatal diabetes. Diabet Med 34:582–585.  https://doi.org/10.1111/dme.13180 CrossRefPubMedGoogle Scholar
  48. De Franco E, Flanagan SE, Yagi T et al (2017b) Dominant ER stress-inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts. Diabetes 66:2044–2053.  https://doi.org/10.2337/db16-1296 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Delvecchio M, Mozzillo E, Salzano G et al (2017) Monogenic diabetes accounts for 6.3% of cases referred to 15 Italian pediatric diabetes centers during 2007 to 2012. J Clin Endocrinol Metab 102:1826–1834.  https://doi.org/10.1210/jc.2016-2490 CrossRefPubMedGoogle Scholar
  50. Dickens LT, Naylor RN (2018) Clinical management of women with monogenic diabetes during pregnancy. Curr Diab Rep 18:12.  https://doi.org/10.1007/s11892-018-0982-8 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Docherty LE, Kabwama S, Lehmann A et al (2013) Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia 56:758–762.  https://doi.org/10.1007/s00125-013-2832-1 CrossRefPubMedGoogle Scholar
  52. Doddabelavangala Mruthyunjaya M, Chapla A, Hesarghatta Shyamasunder A et al (2017) Comprehensive maturity onset diabetes of the young (MODY) gene screening in pregnant women with diabetes in India. PLoS One 12:e0168656.  https://doi.org/10.1371/journal.pone.0168656 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Dubois-Laforgue D, Bellanné-Chantelot C, Charles P et al (2017) Intellectual disability in patients with MODY due to hepatocyte nuclear factor 1B (HNF1B) molecular defects. Diabetes Metab 43:89–92.  https://doi.org/10.1016/j.diabet.2016.10.003 CrossRefPubMedGoogle Scholar
  54. Durmaz E, Flanagan S, Berdeli A, Semiz S, Akcurin S, Ellard S, Bircan I (2012) Variability in the age at diagnosis of diabetes in two unrelated patients with a homozygous glucokinase gene mutation. J Pediatr Endocrinol Metab 25:805–808.  https://doi.org/10.1515/jpem-2012-0077 CrossRefPubMedGoogle Scholar
  55. Dusatkova L, Dusatkova P, Vosahlo J, Vesela K, Cinek O, Lebl J, Pruhova S (2015) Frameshift mutations in the insulin gene leading to prolonged molecule of insulin in two families with maturity-onset diabetes of the young. Eur J Med Genet 58:230–234.  https://doi.org/10.1016/j.ejmg.2015.02.004 CrossRefPubMedGoogle Scholar
  56. Dymecki SM, Niederhuber JE, Desiderio SV (1990) Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Science 247:332–336CrossRefGoogle Scholar
  57. Edghill EL, Bingham C, Ellard S, Hattersley AT (2006a) Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 43:84–90.  https://doi.org/10.1136/jmg.2005.032854 CrossRefPubMedGoogle Scholar
  58. Edghill EL, Bingham C, Slingerland AS, Minton JA, Noordam C, Ellard S, Hattersley AT (2006b) Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. Diabet Med 23:1301–1306.  https://doi.org/10.1111/j.1464-5491.2006.01999.x CrossRefPubMedGoogle Scholar
  59. Edghill EL, Flanagan SE, Patch AM et al (2008) Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 57:1034–1042.  https://doi.org/10.2337/db07-1405 CrossRefPubMedGoogle Scholar
  60. Eifes S, Chudasama KK, Molnes J et al (2013) A novel GATA6 mutation in a child with congenital heart malformation and neonatal diabetes. Clin Case Rep 1:86–90.  https://doi.org/10.1002/ccr3.33 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ellard S, Thomas K, Edghill EL et al (2007) Partial and whole gene deletion mutations of the GCK and HNF1A genes in maturity-onset diabetes of the young. Diabetologia 50:2313–2317.  https://doi.org/10.1007/s00125-007-0798-6 CrossRefPubMedGoogle Scholar
  62. Ellard S, Bellanne-Chantelot C, Hattersley AT, European Molecular Genetics Quality Network Mg (2008) Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 51:546–553.  https://doi.org/10.1007/s00125-008-0942-y CrossRefPubMedPubMedCentralGoogle Scholar
  63. Evliyaoglu O, Ercan O, Ataoğlu E et al (2018) Neonatal diabetes: two cases with isolated pancreas agenesis due to homozygous PTF1A enhancer mutations and one with developmental delay, epilepsy, and neonatal diabetes syndrome due to KCNJ11 mutation. J Clin Res Pediatr Endocrinol 10:168–174.  https://doi.org/10.4274/jcrpe.5162 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Faguer S, Decramer S, Chassaing N et al (2011) Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int 80:768–776.  https://doi.org/10.1038/ki.2011.225 CrossRefPubMedGoogle Scholar
  65. Faguer S, Chassaing N, Bandin F et al (2014) The HNF1B score is a simple tool to select patients for HNF1B gene analysis. Kidney Int 86:1007–1015.  https://doi.org/10.1038/ki.2014.202 CrossRefPubMedGoogle Scholar
  66. Fajans SS, Conn JW (1960) Tolbutamide-induced improvement in carbohydrate tolerance of young people with mild diabetes mellitus. Diabetes 9:83–88CrossRefGoogle Scholar
  67. Fajans SS, Bell GI, Paz VP et al (2010) Obesity and hyperinsulinemia in a family with pancreatic agenesis and MODY caused by the IPF1 mutation Pro63fsX60. Transl Res 156:7–14.  https://doi.org/10.1016/j.trsl.2010.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Fernandez-Zapico ME, van Velkinburgh JC, Gutierrez-Aguilar R, Neve B, Froguel P, Urrutia R, Stein R (2009) MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J Biol Chem 284:36482–36490.  https://doi.org/10.1074/jbc.M109.028852 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ferre S, Igarashi P (2018) New insights into the role of HNF-1beta in kidney (patho)physiology. Pediatr Nephrol.  https://doi.org/10.1007/s00467-018-3990-7 CrossRefGoogle Scholar
  70. Ferrer J (2002) A genetic switch in pancreatic beta-cells: implications for differentiation and haploinsufficiency. Diabetes 51:2355–2362CrossRefGoogle Scholar
  71. Flanagan SE, De Franco E, Lango Allen H et al (2014a) Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metab 19:146–154.  https://doi.org/10.1016/j.cmet.2013.11.021 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Flanagan SE, Haapaniemi E, Russell MA et al (2014b) Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 46:812–814.  https://doi.org/10.1038/ng.3040 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Froguel P, Zouali H, Vionnet N et al (1993) Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med 328:697–702.  https://doi.org/10.1056/NEJM199303113281005 CrossRefPubMedGoogle Scholar
  74. Gaal Z, Klupa T, Kantor I et al (2012) Sulfonylurea use during entire pregnancy in diabetes because of KCNJ11 mutation: a report of two cases. Diabetes Care 35:e40.  https://doi.org/10.2337/dc12-0163 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Gabbay M, Ellard S, De Franco E, Moises RS (2017) Pancreatic agenesis due to compound heterozygosity for a novel enhancer and truncating mutation in the PTF1A gene. J Clin Res Pediatr Endocrinol 9:274–277.  https://doi.org/10.4274/jcrpe.4494 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Garin I, Edghill EL, Akerman I et al (2010) Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci U S A 107:3105–3110.  https://doi.org/10.1073/pnas.0910533107 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Girard CA, Shimomura K, Proks P, Absalom N, Castano L, Perez de Nanclares G, Ashcroft FM (2006) Functional analysis of six Kir6.2 (KCNJ11) mutations causing neonatal diabetes. Pflugers Arch 453:323–332.  https://doi.org/10.1007/s00424-006-0112-3 CrossRefPubMedGoogle Scholar
  78. Gjesing AP, Rui G, Lauenborg J et al (2017) High prevalence of diabetes-predisposing variants in MODY genes among danish women with gestational diabetes mellitus. J Endocr Soc 1:681–690.  https://doi.org/10.1210/js.2017-00040 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849.  https://doi.org/10.1056/NEJMoa032922 CrossRefPubMedGoogle Scholar
  80. Gloyn AL, Diatloff-Zito C, Edghill EL et al (2006) KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur J Hum Genet 14:824–830.  https://doi.org/10.1038/sj.ejhg.5201629 CrossRefPubMedGoogle Scholar
  81. Gonsorcikova L, Pruhová S, Cinek O et al (2008) Autosomal inheritance of diabetes in two families characterized by obesity and a novel H241Q mutation in NEUROD1. Pediatr Diabetes 9:367–372.  https://doi.org/10.1111/j.1399-5448.2008.00379.x CrossRefPubMedGoogle Scholar
  82. Gragnoli C, Lindner T, Cockburn BN, Kaisaki PJ, Gragnoli F, Marozzi G, Bell GI (1997) Maturity-onset diabetes of the young due to a mutation in the hepatocyte nuclear factor-4 alpha binding site in the promoter of the hepatocyte nuclear factor-1 alpha gene. Diabetes 46:1648–1651CrossRefGoogle Scholar
  83. Hansen SK, Parrizas M, Jensen ML et al (2002) Genetic evidence that HNF-1alpha-dependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function. J Clin Invest 110:827–833.  https://doi.org/10.1172/JCI15085 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Harries LW, Ellard S, Stride A, Morgan NG, Hattersley AT (2006) Isomers of the TCF1 gene encoding hepatocyte nuclear factor-1 alpha show differential expression in the pancreas and define the relationship between mutation position and clinical phenotype in monogenic diabetes. Hum Mol Genet 15:2216–2224.  https://doi.org/10.1093/hmg/ddl147 CrossRefPubMedGoogle Scholar
  85. Hattersley AT, Ashcroft FM (2005) Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 54:2503–2513CrossRefGoogle Scholar
  86. Hattersley AT, Patel KA (2017) Precision diabetes: learning from monogenic diabetes. Diabetologia 60:769–777.  https://doi.org/10.1007/s00125-017-4226-2 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Hattersley AT et al (1992) Linkage of type 2 diabetes to the glucokinase gene. Lancet 339:1307–1310CrossRefGoogle Scholar
  88. Hattersley AT, Greeley SAW, Polak M et al (2018) ISPAD Clinical Practice Consensus Guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 19(Suppl 27):47–63.  https://doi.org/10.1111/pedi.12772 CrossRefPubMedGoogle Scholar
  89. Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide AL, Cereghini S (2006) Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Hum Mol Genet 15:2363–2375.  https://doi.org/10.1093/hmg/ddl161 CrossRefPubMedGoogle Scholar
  90. Heidet L, Decramer S, Pawtowski A et al (2010) Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 5:1079–1090.  https://doi.org/10.2215/CJN.06810909 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Horikawa Y, Iwasaki N, Hara M et al (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17:384–385.  https://doi.org/10.1038/ng1297-384 CrossRefPubMedGoogle Scholar
  92. Horikawa Y, Enya M, Mabe H et al (2018) NEUROD1-deficient diabetes (MODY6): identification of the first cases in Japanese and the clinical features. Pediatr Diabetes 19:236–242.  https://doi.org/10.1111/pedi.12553 CrossRefPubMedGoogle Scholar
  93. Iafusco D, Massa O, Pasquino B et al (2012) Minimal incidence of neonatal/infancy onset diabetes in Italy is 1:90,000 live births. Acta Diabetol 49:405–408.  https://doi.org/10.1007/s00592-011-0331-8 CrossRefPubMedGoogle Scholar
  94. Irgens HU, Molnes J, Johansson BB et al (2013) Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry. Diabetologia 56:1512–1519.  https://doi.org/10.1007/s00125-013-2916-y CrossRefPubMedGoogle Scholar
  95. Jo W, Endo M, Ishizu K, Nakamura A, Tajima T (2011) A novel PAX4 mutation in a Japanese patient with maturity-onset diabetes of the young. Tohoku J Exp Med 223:113–118CrossRefGoogle Scholar
  96. Johansson BB, Torsvik J, Bjørkhaug L et al (2011) Diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl ester lipase gene-maturity onset diabetes of the young (CEL-MODY): a protein misfolding disease. J Biol Chem 286:34593–34605.  https://doi.org/10.1074/jbc.M111.222679 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Johansson S, Irgens H, Chudasama KK et al (2012) Exome sequencing and genetic testing for MODY. PLoS One 7:e38050.  https://doi.org/10.1371/journal.pone.0038050 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Johansson BB, Irgens HU, Molnes J et al (2017) Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia 60:625–635.  https://doi.org/10.1007/s00125-016-4167-1 CrossRefPubMedGoogle Scholar
  99. Johnson MB, De Franco E, Lango Allen H et al (2017) Recessively inherited LRBA mutations cause autoimmunity presenting as neonatal diabetes. Diabetes 66:2316–2322.  https://doi.org/10.2337/db17-0040 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Johnson SR, Leo P, Conwell LS, Harris M, Brown MA, Duncan EL (2018a) Clinical usefulness of comprehensive genetic screening in maturity onset diabetes of the young (MODY): a novel ABCC8 mutation in a previously screened family. J Diabetes 10:764–767.  https://doi.org/10.1111/1753-0407.12778 CrossRefPubMedGoogle Scholar
  101. Johnson SR, Leo PJ, McInerney-Leo AM et al (2018b) Whole-exome sequencing for mutation detection in pediatric disorders of insulin secretion: maturity onset diabetes of the young and congenital hyperinsulinism. Pediatr Diabetes 19:656–662.  https://doi.org/10.1111/pedi.12638 CrossRefPubMedGoogle Scholar
  102. Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371:606–609.  https://doi.org/10.1038/371606a0 CrossRefPubMedGoogle Scholar
  103. Juszczak A, Pryse R, Schuman A, Owen KR (2016) When to consider a diagnosis of MODY at the presentation of diabetes: aetiology matters for correct management. Br J Gen Pract 66:e457–e459.  https://doi.org/10.3399/bjgp16X685537 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Khandelwal P, Sinha A, Jain V, Houghton J, Hari P, Bagga A (2018) Fanconi syndrome and neonatal diabetes: phenotypic heterogeneity in patients with GLUT2 defects. CEN Case Rep 7:1–4.  https://doi.org/10.1007/s13730-017-0278-x CrossRefPubMedGoogle Scholar
  105. Klupa T, Kozek E, Nowak N et al (2010) The first case report of sulfonylurea use in a woman with permanent neonatal diabetes mellitus due to KCNJ11 mutation during a high-risk pregnancy. J Clin Endocrinol Metab 95:3599–3604.  https://doi.org/10.1210/jc.2010-0096 CrossRefPubMedGoogle Scholar
  106. Kristinsson SY, Thorolfsdottir ET, Talseth B et al (2001) MODY in Iceland is associated with mutations in HNF-1alpha and a novel mutation in NeuroD1. Diabetologia 44:2098–2103.  https://doi.org/10.1007/s001250100016 CrossRefPubMedGoogle Scholar
  107. Kwak SH, Jung CH, Ahn CH et al (2016) Clinical whole exome sequencing in early onset diabetes patients. Diabetes Res Clin Pract 122:71–77.  https://doi.org/10.1016/j.diabres.2016.10.005 CrossRefPubMedGoogle Scholar
  108. Laffargue F, Bourthoumieu S, Llanas B et al (2015) Towards a new point of view on the phenotype of patients with a 17q12 microdeletion syndrome. Arch Dis Child 100:259–264.  https://doi.org/10.1136/archdischild-2014-306810 CrossRefPubMedGoogle Scholar
  109. Lausen J, Thomas H, Lemm I et al (2000) Naturally occurring mutations in the human HNF4alpha gene impair the function of the transcription factor to a varying degree. Nucleic Acids Res 28:430–437CrossRefGoogle Scholar
  110. Liu L, Furuta H, Minami A, Zheng T, Jia W, Nanjo K, Xiang K (2007) A novel mutation, Ser159Pro in the NeuroD1/BETA2 gene contributes to the development of diabetes in a Chinese potential MODY family. Mol Cell Biochem 303:115–120.  https://doi.org/10.1007/s11010-007-9463-0 CrossRefPubMedGoogle Scholar
  111. Lombardo D (2001) Bile salt-dependent lipase: its pathophysiological implications. Biochim Biophys Acta 1533:1–28CrossRefGoogle Scholar
  112. Lorenzo PI, Juarez-Vicente F, Cobo-Vuilleumier N, Garcia-Dominguez M, Gauthier BR (2017) The diabetes-linked transcription factor PAX4: from gene to functional consequences. Genes (Basel) 8.  https://doi.org/10.3390/genes8030101 CrossRefGoogle Scholar
  113. Lorenzo PI, Cobo-Vuilleumier N, Gauthier BR (2018) Therapeutic potential of pancreatic PAX4-regulated pathways in treating diabetes mellitus. Curr Opin Pharmacol 43:1–10.  https://doi.org/10.1016/j.coph.2018.07.004 CrossRefPubMedGoogle Scholar
  114. Ma Y, Han X, Zhou X et al (2018) A new clinical screening strategy and prevalence estimation for glucokinase variant-induced diabetes in an adult Chinese population. Genet Med.  https://doi.org/10.1038/s41436-018-0282-3 CrossRefGoogle Scholar
  115. Mackay DJ, Temple IK (2010) Transient neonatal diabetes mellitus type 1. Am J Med Genet C Semin Med Genet 154C:335–342.  https://doi.org/10.1002/ajmg.c.30272 CrossRefPubMedGoogle Scholar
  116. Mackay DJ, Boonen SE, Clayton-Smith J et al (2006) A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet 120:262–269.  https://doi.org/10.1007/s00439-006-0205-2 CrossRefPubMedGoogle Scholar
  117. Maestro MA, Cardalda C, Boj SF, Luco RF, Servitja JM, Ferrer J (2007) Distinct roles of HNF1beta, HNF1alpha, and HNF4alpha in regulating pancreas development, beta-cell function and growth. Endocr Dev 12:33–45.  https://doi.org/10.1159/000109603 CrossRefPubMedGoogle Scholar
  118. Malecki MT, Jhala US, Antonellis A et al (1999) Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 23:323–328.  https://doi.org/10.1038/15500 CrossRefPubMedGoogle Scholar
  119. Mangrum C, Rush E, Shivaswamy V (2015) Genetically targeted dipeptidyl peptidase-4 inhibitor use in a patient with a novel mutation of MODY type 4. Clin Med Insights Endocrinol Diabetes 8:83–86.  https://doi.org/10.4137/CMED.S31926 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Massa O, Iafusco D, D’Amato E et al (2005) KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Hum Mutat 25:22–27.  https://doi.org/10.1002/humu.20124 CrossRefPubMedGoogle Scholar
  121. Matschinsky FM (1990) Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39:647–652CrossRefGoogle Scholar
  122. Mefford HC, Clauin S, Sharp AJ et al (2007) Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy. Am J Hum Genet 81:1057–1069.  https://doi.org/10.1086/522591 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Menzel R, Kaisaki PJ, Rjasanowski I, Heinke P, Kerner W, Menzel S (1998) A low renal threshold for glucose in diabetic patients with a mutation in the hepatocyte nuclear factor-1alpha (HNF-1alpha) gene. Diabet Med 15:816–820.  https://doi.org/10.1002/(SICI)1096-9136(199810)15:10<816::AID-DIA714>3.0.CO;2-P CrossRefPubMedGoogle Scholar
  124. Meur G, Simon A, Harun N et al (2010) Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. Diabetes 59:653–661.  https://doi.org/10.2337/db09-1091 CrossRefPubMedGoogle Scholar
  125. Mitchell J, Punthakee Z, Lo B et al (2004) Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome. Diabetologia 47:2160–2167.  https://doi.org/10.1007/s00125-004-1576-3 CrossRefPubMedGoogle Scholar
  126. Mitsuuchi Y, Johnson SW, Sonoda G, Tanno S, Golemis EA, Testa JR (1999) Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene 18:4891–4898.  https://doi.org/10.1038/sj.onc.1203080 CrossRefPubMedGoogle Scholar
  127. Mohan V, Radha V, Nguyen TT et al (2018) Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India. BMC Med Genet 19:22.  https://doi.org/10.1186/s12881-018-0528-6 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Molven A, Ringdal M, Nordbø AM et al (2008) Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes 57:1131–1135.  https://doi.org/10.2337/db07-1467 CrossRefPubMedGoogle Scholar
  129. Myngheer N, Allegaert K, Hattersley A et al (2014) Fetal macrosomia and neonatal hyperinsulinemic hypoglycemia associated with transplacental transfer of sulfonylurea in a mother with KCNJ11-related neonatal diabetes. Diabetes care 37:3333–3335.  https://doi.org/10.2337/dc14-1247 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Naya FJ, Stellrecht CM, Tsai MJ (1995) Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 9:1009–1019CrossRefGoogle Scholar
  131. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11:2323–2334CrossRefGoogle Scholar
  132. Negahdar M, Aukrust I, Johansson BB et al (2012) GCK-MODY diabetes associated with protein misfolding, cellular self-association and degradation. Biochim Biophys Acta 1822:1705–1715.  https://doi.org/10.1016/j.bbadis.2012.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Negahdar M, Aukrust I, Molnes J et al (2014) GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation. Mol Cell Endocrinol 382:55–65.  https://doi.org/10.1016/j.mce.2013.08.020 CrossRefPubMedGoogle Scholar
  134. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V et al (2005) Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A 102:4807–4812.  https://doi.org/10.1073/pnas.0409177102 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Nicolino M, Claiborn KC, Senee V, Boland A, Stoffers DA, Julier C (2010) A novel hypomorphic PDX1 mutation responsible for permanent neonatal diabetes with subclinical exocrine deficiency. Diabetes 59:733–740.  https://doi.org/10.2337/db09-1284 CrossRefPubMedGoogle Scholar
  136. Njolstad PR, Søvik O, Cuesta-Muñoz A et al (2001) Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med 344:1588–1592.  https://doi.org/10.1056/NEJM200105243442104 CrossRefPubMedGoogle Scholar
  137. Njolstad PR, Sagen JV, Bjørkhaug L et al (2003) Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-insulin signaling pathway. Diabetes 52:2854–2860CrossRefGoogle Scholar
  138. Odom DT, Zizlsperger N, Gordon DB et al (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378–1381.  https://doi.org/10.1126/science.1089769 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Oriola J, Moreno F, Gutierrez-Nogues A, Leon S, Garcia-Herrero CM, Vincent O, Navas MA (2015) Lack of glibenclamide response in a case of permanent neonatal diabetes caused by incomplete inactivation of glucokinase. JIMD Rep 20:21–26.  https://doi.org/10.1007/8904_2014_383 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Orosz O, Czeglédi M, Kántor I et al (2015) Ophthalmological phenotype associated with homozygous null mutation in the NEUROD1 gene. Mol Vis 21:124–130PubMedPubMedCentralGoogle Scholar
  141. Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanne-Chantelot C, Ellard S, Gloyn AL (2009) Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 30:1512–1526.  https://doi.org/10.1002/humu.21110 CrossRefPubMedGoogle Scholar
  142. Owen KR, Thanabalasingham G, James TJ, Karpe F, Farmer AJ, McCarthy MI, Gloyn AL (2010) Assessment of high-sensitivity C-reactive protein levels as diagnostic discriminator of maturity-onset diabetes of the young due to HNF1A mutations. Diabetes Care 33:1919–1924.  https://doi.org/10.2337/dc10-0288 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Pan FC, Brissova M, Powers AC, Pfaff S, Wright CV (2015) Inactivating the permanent neonatal diabetes gene Mnx1 switches insulin-producing beta-cells to a delta-like fate and reveals a facultative proliferative capacity in aged beta-cells. Development 142:3637–3648.  https://doi.org/10.1242/dev.126011 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Park SY, Ye H, Steiner DF, Bell GI (2010) Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted. Biochem Biophys Res Commun 391:1449–1454.  https://doi.org/10.1016/j.bbrc.2009.12.090 CrossRefPubMedGoogle Scholar
  145. Patel KA, Kettunen J, Laakso M et al (2017) Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat Commun 8:888.  https://doi.org/10.1038/s41467-017-00895-9 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT (2003) Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 362:1275–1281.  https://doi.org/10.1016/S0140-6736(03)14571-0 CrossRefPubMedGoogle Scholar
  147. Pearson ER, Badman MK, Lockwood CR, Clark PM, Ellard S, Bingham C, Hattersley AT (2004) Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and -1beta mutations. Diabetes Care 27:1102–1107CrossRefGoogle Scholar
  148. Pearson ER, Flechtner I, Njølstad PR et al (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355:467–477.  https://doi.org/10.1056/NEJMoa061759 CrossRefPubMedGoogle Scholar
  149. Pearson ER, Boj SF, Steele AM et al (2007) Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med 4:e118.  https://doi.org/10.1371/journal.pmed.0040118 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Perakakis N, Danassi D, Alt M et al (2012) Human Kruppel-like factor 11 differentially regulates human insulin promoter activity in beta-cells and non-beta-cells via p300 and PDX1 through the regulatory sites A3 and CACCC box. Mol Cell Endocrinol 363:20–26.  https://doi.org/10.1016/j.mce.2012.07.003 CrossRefPubMedGoogle Scholar
  151. Petersen HV, Jørgensen MC, Andersen FG et al (2000) Pax4 represses pancreatic glucagon gene expression. Mol Cell Biol Res Commun 3:249–254.  https://doi.org/10.1006/mcbr.2000.0220 CrossRefPubMedGoogle Scholar
  152. Piccini B, Artuso R, Lenzi L et al (2016) Clinical and molecular characterization of a novel INS mutation identified in patients with MODY phenotype. Eur J Med Genet 59:590–595.  https://doi.org/10.1016/j.ejmg.2016.09.016 CrossRefPubMedGoogle Scholar
  153. Pihoker C, Gilliam LK, Ellard S et al (2013) Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab 98:4055–4062.  https://doi.org/10.1210/jc.2013-1279 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Plengvidhya N, Kooptiwut S, Songtawee N et al (2007) PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab 92:2821–2826.  https://doi.org/10.1210/jc.2006-1927 CrossRefPubMedGoogle Scholar
  155. Poll AV, Pierreux CE, Lokmane L et al (2006) A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes 55:61–69CrossRefGoogle Scholar
  156. Proks P, Arnold AL, Bruining J et al (2006) A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Genet 15:1793–1800.  https://doi.org/10.1093/hmg/ddl101 CrossRefPubMedGoogle Scholar
  157. Prudente S, Jungtrakoon P, Marucci A et al (2015) Loss-of-function mutations in APPL1 in familial diabetes mellitus. Am J Hum Genet 97:177–185.  https://doi.org/10.1016/j.ajhg.2015.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Raeder H, Johansson S, Holm PI et al (2006) Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet 38:54–62.  https://doi.org/10.1038/ng1708 CrossRefPubMedGoogle Scholar
  159. Raimondo A, Chakera AJ, Thomsen SK et al (2014) Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. Hum Mol Genet 23:6432–6440.  https://doi.org/10.1093/hmg/ddu360 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Remedi MS, Koster JC, Patton BL, Nichols CG (2005) ATP-sensitive K+ channel signaling in glucokinase-deficient diabetes. Diabetes 54:2925–2931CrossRefGoogle Scholar
  161. Rubio-Cabezas O, Diaz Gonzalez F, Aragones A, Argente J, Campos-Barros A (2008) Permanent neonatal diabetes caused by a homozygous nonsense mutation in the glucokinase gene. Pediatr Diabetes 9:245–249.  https://doi.org/10.1111/j.1399-5448.2007.00361.x CrossRefPubMedGoogle Scholar
  162. Rubio-Cabezas O, Minton JA, Caswell R et al (2009a) Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care 32:111–116.  https://doi.org/10.2337/dc08-1188 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Rubio-Cabezas O, Patch AM, Minton JA et al (2009b) Wolcott-Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. J Clin Endocrinol Metab 94:4162–4170.  https://doi.org/10.1210/jc.2009-1137 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT (2010) Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 59:2326–2331.  https://doi.org/10.2337/db10-0011 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Rubio-Cabezas O, Jensen JN, Hodgson MI, Codner E, Ellard S, Serup P, Hattersley AT (2011) Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60:1349–1353.  https://doi.org/10.2337/db10-1008 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Rudland VL, Hinchcliffe M, Pinner J et al (2016) Identifying glucokinase monogenic diabetes in a multiethnic gestational diabetes mellitus cohort: new pregnancy screening criteria and utility of HbA1c. Diabetes Care 39:50–52.  https://doi.org/10.2337/dc15-1001 CrossRefPubMedGoogle Scholar
  167. Ryffel GU (2001) Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J Mol Endocrinol 27:11–29CrossRefGoogle Scholar
  168. Saarimaki-Vire J, Balboa D, Russell MA et al (2017) An activating STAT3 mutation causes neonatal diabetes through premature induction of pancreatic differentiation. Cell Rep 19:281–294.  https://doi.org/10.1016/j.celrep.2017.03.055 CrossRefPubMedGoogle Scholar
  169. Sagen JV, Raeder H, Hathout E et al (2004) Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53:2713–2718CrossRefGoogle Scholar
  170. Sansbury FH, Flanagan SE, Houghton JA et al (2012) SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. Diabetologia 55:2381–2385.  https://doi.org/10.1007/s00125-012-2595-0 CrossRefPubMedGoogle Scholar
  171. Sansbury FH, Kirel B, Caswell R et al (2015) Biallelic RFX6 mutations can cause childhood as well as neonatal onset diabetes mellitus. Eur J Hum Genet 23:1744–1748.  https://doi.org/10.1038/ejhg.2015.161 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Sellick GS, Barker KT, Stolte-Dijkstra I et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305.  https://doi.org/10.1038/ng1475 CrossRefPubMedGoogle Scholar
  173. Senee V, Chelala C, Duchatelet S et al (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38:682–687.  https://doi.org/10.1038/ng1802 CrossRefPubMedGoogle Scholar
  174. Shalev SA, Tenenbaum-Rakover Y, Horovitz Y et al (2014) Microcephaly, epilepsy, and neonatal diabetes due to compound heterozygous mutations in IER3IP1: insights into the natural history of a rare disorder. Pediatr Diabetes 15:252–256.  https://doi.org/10.1111/pedi.12086 CrossRefPubMedGoogle Scholar
  175. Shaw-Smith C, Flanagan SE, Patch AM et al (2012) Recessive SLC19A2 mutations are a cause of neonatal diabetes mellitus in thiamine-responsive megaloblastic anaemia. Pediatr Diabetes 13:314–321.  https://doi.org/10.1111/j.1399-5448.2012.00855.x CrossRefPubMedGoogle Scholar
  176. Shaw-Smith C, De Franco E, Lango Allen H et al (2014) GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes 63:2888–2894.  https://doi.org/10.2337/db14-0061 CrossRefPubMedGoogle Scholar
  177. Shepherd M, Hattersley AT (2004) I don’t feel like a diabetic any more’: the impact of stopping insulin in patients with maturity onset diabetes of the young following genetic testing. Clin Med (Lond) 4:144–147CrossRefGoogle Scholar
  178. Shepherd M et al (2001) Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabet Med 18:417–421CrossRefGoogle Scholar
  179. Shepherd M, Shields B, Hammersley S et al (2016) Systematic population screening, using biomarkers and genetic testing, identifies 2.5% of the U.K. pediatric diabetes population with monogenic diabetes. Diabetes Care 39:1879–1888.  https://doi.org/10.2337/dc16-0645 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Shepherd M, Brook AJ, Chakera AJ, Hattersley AT (2017) Management of sulfonylurea-treated monogenic diabetes in pregnancy: implications of placental glibenclamide transfer. Diabet Med 34:1332–1339.  https://doi.org/10.1111/dme.13388 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Shepherd MH, Shields BM, Hudson M et al (2018) A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. Diabetologia 61:2520–2527.  https://doi.org/10.1007/s00125-018-4728-6 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Shield JP (2000) Neonatal diabetes: new insights into aetiology and implications. Horm Res 53(Suppl 1):7–11.  https://doi.org/10.1159/000053198 CrossRefPubMedGoogle Scholar
  183. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S (2010) Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53:2504–2508.  https://doi.org/10.1007/s00125-010-1799-4 CrossRefPubMedGoogle Scholar
  184. Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, Hattersley AT (2012) The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia 55:1265–1272.  https://doi.org/10.1007/s00125-011-2418-8 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Smith SB, Watada H, Scheel DW, Mrejen C, German MS (2000) Autoregulation and maturity onset diabetes of the young transcription factors control the human PAX4 promoter. J Biol Chem 275:36910–36919.  https://doi.org/10.1074/jbc.M005202200 CrossRefPubMedGoogle Scholar
  186. Solomon BD, Pineda-Alvarez DE, Balog JZ et al (2009) Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am J Med Genet A 149A:2543–2546.  https://doi.org/10.1002/ajmg.a.33081 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P (1997) The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386:399–402.  https://doi.org/10.1038/386399a0 CrossRefPubMedGoogle Scholar
  188. Spiegel R, Dobbie A, Hartman C, de Vries L, Ellard S, Shalev SA (2011) Clinical characterization of a newly described neonatal diabetes syndrome caused by RFX6 mutations. Am J Med Genet A 155A:2821–2825.  https://doi.org/10.1002/ajmg.a.34251 CrossRefPubMedGoogle Scholar
  189. Stanik J, Dusatkova P, Cinek O et al (2014) De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia 57:480–484.  https://doi.org/10.1007/s00125-013-3119-2 CrossRefPubMedGoogle Scholar
  190. Stanojevic V, Habener JF, Thomas MK (2004) Pancreas duodenum homeobox-1 transcriptional activation requires interactions with p300. Endocrinology 145:2918–2928.  https://doi.org/10.1210/en.2003-1188 CrossRefPubMedGoogle Scholar
  191. Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT (2014) Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA 311:279–286.  https://doi.org/10.1001/jama.2013.283980 CrossRefPubMedGoogle Scholar
  192. Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997a) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17:138–139.  https://doi.org/10.1038/ng1097-138 CrossRefPubMedGoogle Scholar
  193. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997b) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110.  https://doi.org/10.1038/ng0197-106 CrossRefPubMedGoogle Scholar
  194. Stoy J, Edghill EL, Flanagan SE et al (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A 104:15040–15044.  https://doi.org/10.1073/pnas.0707291104 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Stoy J, Steiner DF, Park SY, Ye H, Philipson LH, Bell GI (2010) Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev Endocr Metab Disord 11:205–215.  https://doi.org/10.1007/s11154-010-9151-3 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Sujjitjoon J, Kooptiwut S, Chongjaroen N, Tangjittipokin W, Plengvidhya N, Yenchitsomanus PT (2016) Aberrant mRNA splicing of paired box 4 (PAX4) IVS7-1G>A mutation causing maturity-onset diabetes of the young, type 9. Acta Diabetol 53:205–216.  https://doi.org/10.1007/s00592-015-0760-x CrossRefPubMedGoogle Scholar
  197. Sun C, Pei Z, Zhang M et al (2018) Recovered insulin production after thiamine administration in permanent neonatal diabetes mellitus with a novel solute carrier family 19 member 2 (SLC19A2) mutation. J Diabetes 10:50–58.  https://doi.org/10.1111/1753-0407.12556 CrossRefPubMedGoogle Scholar
  198. Suzuki S, Nakao A, Sarhat AR et al (2014) A case of pancreatic agenesis and congenital heart defects with a novel GATA6 nonsense mutation: evidence of haploinsufficiency due to nonsense-mediated mRNA decay. Am J Med Genet A. 164A:476–479.  https://doi.org/10.1002/ajmg.a.36275 CrossRefGoogle Scholar
  199. Szopa M, Ludwig-Galezowska AH, Radkowski P et al (2016) A family with the Arg103Pro mutation in the NEUROD1 gene detected by next-generation sequencing – clinical characteristics of mutation carriers. Eur J Med Genet 59:75–79.  https://doi.org/10.1016/j.ejmg.2016.01.002 CrossRefPubMedGoogle Scholar
  200. Tattersall RB (1974) Mild familial diabetes with dominant inheritance. Q J Med 43:339–357PubMedGoogle Scholar
  201. Thanabalasingham G, Shah N, Vaxillaire M et al (2011) A large multi-centre European study validates high-sensitivity C-reactive protein (hsCRP) as a clinical biomarker for the diagnosis of diabetes subtypes. Diabetologia 54:2801–2810.  https://doi.org/10.1007/s00125-011-2261-y CrossRefPubMedGoogle Scholar
  202. Thanabalasingham G, Pal A, Selwood MP et al (2012) Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care 35:1206–1212.  https://doi.org/10.2337/dc11-1243 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Thomas H, Jaschkowitz K, Bulman M et al (2001) A distant upstream promoter of the HNF-4alpha gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum Mol Genet 10:2089–2097CrossRefGoogle Scholar
  204. Thomas H, Badenberg B, Bulman M et al (2002) Evidence for haploinsufficiency of the human HNF1alpha gene revealed by functional characterization of MODY3-associated mutations. Biol Chem 383:1691–1700.  https://doi.org/10.1515/BC.2002.190 CrossRefPubMedGoogle Scholar
  205. Toniatti C, Demartis A, Monaci P, Nicosia A, Ciliberto G (1990) Synergistic trans-activation of the human C-reactive protein promoter by transcription factor HNF-1 binding at two distinct sites. EMBO J 9:4467–4475CrossRefGoogle Scholar
  206. Touati A, Errea-Dorronsoro J, Nouri S et al (2018) Transient neonatal diabetes mellitus and hypomethylation at additional imprinted loci: novel ZFP57 mutation and review on the literature. Acta Diabetol.  https://doi.org/10.1007/s00592-018-1239-3 CrossRefGoogle Scholar
  207. Tuhan H, Catli G, Anik A, Ozmen D, Turkmen MA, Bober E, Abaci A (2015) Neonatal diabetes mellitus due to a novel mutation in the GATA6 gene accompanying renal dysfunction: a case report. Am J Med Genet A 167A:925–927.  https://doi.org/10.1002/ajmg.a.36984 CrossRefGoogle Scholar
  208. Turkkahraman D, Bircan I, Tribble ND, Akcurin S, Ellard S, Gloyn AL (2008) Permanent neonatal diabetes mellitus caused by a novel homozygous (T168A) glucokinase (GCK) mutation: initial response to oral sulphonylurea therapy. J Pediatr 153:122–126.  https://doi.org/10.1016/j.jpeds.2007.12.037 CrossRefPubMedGoogle Scholar
  209. Ulinski T, Lescure S, Beaufils S et al (2006) Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 17:497–503.  https://doi.org/10.1681/ASN.2005101040 CrossRefPubMedGoogle Scholar
  210. Valentinova L, Beer NL, Staník J et al (2012) Identification and functional characterisation of novel glucokinase mutations causing maturity-onset diabetes of the young in Slovakia. PLoS One 7:e34541.  https://doi.org/10.1371/journal.pone.0034541 CrossRefPubMedPubMedCentralGoogle Scholar
  211. van der Meulen T, Huising MO (2015) Role of transcription factors in the transdifferentiation of pancreatic islet cells. J Mol Endocrinol 54:R103–R117.  https://doi.org/10.1530/JME-14-0290 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Vaxillaire M, Populaire C, Busiah K et al (2004) Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes 53:2719–2722CrossRefGoogle Scholar
  213. Velayos T, Martínez R, Alonso M et al (2017) An activating mutation in STAT3 results in neonatal diabetes through reduced insulin synthesis. Diabetes 66:1022–1029.  https://doi.org/10.2337/db16-0867 CrossRefPubMedGoogle Scholar
  214. Wang Q, Elghazi L, Martin S et al (2008) Ghrelin is a novel target of Pax4 in endocrine progenitors of the pancreas and duodenum. Dev Dyn 237:51–61.  https://doi.org/10.1002/dvdy.21379 CrossRefPubMedGoogle Scholar
  215. Wang Y, Cheng KK, Lam KS et al (2011) APPL1 counteracts obesity-induced vascular insulin resistance and endothelial dysfunction by modulating the endothelial production of nitric oxide and endothelin-1 in mice. Diabetes 60:3044–3054.  https://doi.org/10.2337/db11-0666 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Weedon MN, Cebola I, Patch AM et al (2014) Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet 46:61–64.  https://doi.org/10.1038/ng.2826 CrossRefPubMedGoogle Scholar
  217. Yamagata K (2003) Regulation of pancreatic beta-cell function by the HNF transcription network: lessons from maturity-onset diabetes of the young (MODY). Endocr J 50:491–499CrossRefGoogle Scholar
  218. Yamagata K (2014) Roles of HNF1alpha and HNF4alpha in pancreatic beta-cells: lessons from a monogenic form of diabetes (MODY). Vitam Horm 95:407–423.  https://doi.org/10.1016/B978-0-12-800174-5.00016-8 CrossRefPubMedGoogle Scholar
  219. Yamagata K, Furuta H, Oda N et al (1996a) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384:458–460.  https://doi.org/10.1038/384458a0 CrossRefPubMedGoogle Scholar
  220. Yamagata K, Oda N, Kaisaki PJ et al (1996b) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384:455–458.  https://doi.org/10.1038/384455a0 CrossRefPubMedGoogle Scholar
  221. Yan J, Jiang F, Zhang R et al (2017) Whole-exome sequencing identifies a novel INS mutation causative of maturity-onset diabetes of the young 10. J Mol Cell Biol 9:376–383.  https://doi.org/10.1093/jmcb/mjx039 CrossRefPubMedGoogle Scholar
  222. Yorifuji T, Kurokawa K, Mamada M et al (2004) Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1beta gene due to germline mosaicism. J Clin Endocrinol Metab 89:2905–2908.  https://doi.org/10.1210/jc.2003-031828 CrossRefPubMedGoogle Scholar
  223. Zoncu R, Perera RM, Balkin DM, Pirruccello M, Toomre D, De Camilli P (2009) A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136:1110–1121.  https://doi.org/10.1016/j.cell.2009.01.032 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.4th Department of Medicine, Jósa András Teaching HospitalNyíregyházaHungary
  2. 2.Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary

Personalised recommendations