Skip to main content

Sex Steroid Hormones and Osteosarcopenia

  • Chapter
  • First Online:
Osteosarcopenia: Bone, Muscle and Fat Interactions

Abstract

Sex steroids exert diverse, divergent and dynamic effects on muscle and bone. Beyond their essential role in sexual dimorphism, sex steroids contribute to the accrual, maintenance and age-related involution of the musculoskeletal system. Falls and fractures occur, dire consequences of musculoskeletal attrition and functional decline, in association with a critical reduction in sex steroids in older individuals. Conversely, the reversal of sex steroid deficiency and therapies that specifically target sex steroid receptor signalling (e.g. SARMs) mitigate aspects of musculoskeletal aging. This chapter will discuss key principles in sex steroid biology, evidence from preclinical and clinical studies on their anabolic and anti-catabolic effects on muscle and bone, and therapeutic possibilities for osteosarcopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 282(37):27298–27305

    Article  CAS  PubMed  Google Scholar 

  • Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R et al (2017) Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev 97(1):135–187

    Article  PubMed  Google Scholar 

  • Balagopal P, Nair KS, Stirewalt WS (1994) Isolation of myosin heavy chain from small skeletal muscle samples by preparative continuous elution gel electrophoresis: application to measurement of synthesis rate in human and animal tissue. Anal Biochem 221(1):72–77

    Article  CAS  PubMed  Google Scholar 

  • Bandari J, Ayyash OM, Emery SL, Wessel CB, Davies BJ (2017) Marketing and testosterone treatment in the USA: a systematic review. Eur Urol Focus 3(4–5):395–402

    Article  PubMed  Google Scholar 

  • Barrett-Connor E, Young R, Notelovitz M, Sullivan J, Wiita B, Yang HM et al (1999) A two-year, double-blind comparison of estrogen-androgen and conjugated estrogens in surgically menopausal women. Effects on bone mineral density, symptoms and lipid profiles. J Reprod Med 44(12):1012–1020

    CAS  PubMed  Google Scholar 

  • Bartell SM, Han L, Kim HN, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS et al (2013) Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass. Mol Endocrinol 27(4):649–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basaria S, Lieb J 2nd, Tang AM, DeWeese T, Carducci M, Eisenberger M et al (2002) Long-term effects of androgen deprivation therapy in prostate cancer patients. Clin Endocrinol 56(6):779–786

    Article  CAS  Google Scholar 

  • Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM et al (2010) Adverse events associated with testosterone administration. N Engl J Med 363(2):109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basaria S, Collins L, Dillon EL, Orwoll K, Storer TW, Miciek R et al (2013) The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J Gerontol A Biol Sci Med Sci 68(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Basualto-Alarcon C, Jorquera G, Altamirano F, Jaimovich E, Estrada M (2013) Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Med Sci Sports Exerc 45(9):1712–1720

    Article  CAS  PubMed  Google Scholar 

  • Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R et al (2006) Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab 2(3):146–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat M, Kalam R, Qadri SS, Madabushi S, Ismail A (2013) Vitamin D deficiency induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology 154(11):4018–4029

    Article  CAS  PubMed  Google Scholar 

  • Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrie AE, Kim RB (2017) Molecular basis of aromatase inhibitor associated arthralgia: known and potential candidate genes and associated biomarkers. Expert Opin Drug Metab Toxicol 13(2):149–156

    Article  CAS  PubMed  Google Scholar 

  • Bristow SM, Gamble GD, Stewart A, Horne L, House ME, Aati O et al (2014) Acute and 3-month effects of microcrystalline hydroxyapatite, calcium citrate and calcium carbonate on serum calcium and markers of bone turnover: a randomised controlled trial in postmenopausal women. Br J Nutr 112(10):1611–1620

    Article  CAS  PubMed  Google Scholar 

  • Callewaert F, Venken K, Ophoff J, De Gendt K, Torcasio A, van Lenthe GH et al (2009) Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor-alpha. FASEB J 23(1):232–240

    Article  CAS  PubMed  Google Scholar 

  • Calvani R, Martone AM, Marzetti E, Onder G, Savera G, Lorenzi M et al (2014) Pre-hospital dietary intake correlates with muscle mass at the time of fracture in older hip-fractured patients. Front Aging Neurosci 6:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B et al (2005) Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res 20(9):1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Cawthon PM, Ensrud KE, Laughlin GA, Cauley JA, Dam TT, Barrett-Connor E et al (2009) Sex hormones and frailty in older men: the osteoporotic fractures in men (MrOS) study. J Clin Endocrinol Metab 94(10):3806–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung AS, Zajac JD, Grossmann M (2014) Muscle and bone effects of androgen deprivation therapy: current and emerging therapies. Endocr Relat Cancer 21(5):R371–R394

    Article  CAS  PubMed  Google Scholar 

  • Cheung AS, Gray H, Schache AG, Hoermann R, Lim Joon D, Zajac JD et al (2017) Androgen deprivation causes selective deficits in the biomechanical leg muscle function of men during walking: a prospective case-control study. J Cachexia Sarcopenia Muscle 8(1):102–112

    Article  PubMed  Google Scholar 

  • Cheung AS, Cunningham C, Ko DD, Ly V, Gray H, Hoermann R et al (2018) Selective loss of levator ani and leg muscle volumes in men undergoing androgen deprivation therapy. J Clin Endocrinol Metab 104(6):2229–2238

    Article  Google Scholar 

  • Chiang C, Chiu M, Moore AJ, Anderson PH, Ghasem-Zadeh A, McManus JF et al (2009) Mineralization and bone resorption are regulated by the androgen receptor in male mice. J Bone Miner Res 24(4):621–631

    Article  CAS  PubMed  Google Scholar 

  • Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45(10):2191–2199

    Article  CAS  PubMed  Google Scholar 

  • Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST et al (2011) The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2(3):153–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Davey RA, Grossmann M (2016) Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev 37(1):3–15

    PubMed  PubMed Central  Google Scholar 

  • Davis SR, Wahlin-Jacobsen S (2015) Testosterone in women – the clinical significance. Lancet Diabetes Endocrinol 3(12):980–992

    Article  CAS  PubMed  Google Scholar 

  • Davis SR, McCloud P, Strauss BJ, Burger H (1995) Testosterone enhances estradiol’s effects on postmenopausal bone density and sexuality. Maturitas 21(3):227–236

    Article  CAS  PubMed  Google Scholar 

  • de Rooy C, Grossmann M, Zajac JD, Cheung AS (2016) Targeting muscle signaling pathways to minimize adverse effects of androgen deprivation. Endocr Relat Cancer 23(1):R15–R26

    Article  PubMed  CAS  Google Scholar 

  • Dobs AS, Nguyen T, Pace C, Roberts CP (2002) Differential effects of oral estrogen versus oral estrogen-androgen replacement therapy on body composition in postmenopausal women. J Clin Endocrinol Metab 87(4):1509–1516

    Article  CAS  PubMed  Google Scholar 

  • Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT, Hancock ML et al (2013) Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol 14(4):335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois V, Laurent M, Boonen S, Vanderschueren D, Claessens F (2012) Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol Life Sci 69(10):1651–1667

    Article  CAS  PubMed  Google Scholar 

  • Dubois V, Laurent MR, Sinnesael M, Cielen N, Helsen C, Clinckemalie L et al (2014) A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J 28(7):2979–2994

    Article  CAS  PubMed  Google Scholar 

  • Estrada M, Liberona JL, Miranda M, Jaimovich E (2000) Aldosterone- and testosterone-mediated intracellular calcium response in skeletal muscle cell cultures. Am J Physiol Endocrinol Metab 279(1):E132–E139

    Article  CAS  PubMed  Google Scholar 

  • Estrada M, Espinosa A, Muller M, Jaimovich E (2003) Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology 144(8):3586–3597

    Article  CAS  PubMed  Google Scholar 

  • Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) investigators. JAMA 282(7):637–645

    Article  CAS  PubMed  Google Scholar 

  • Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD et al (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab 87(2):589–598

    Article  CAS  PubMed  Google Scholar 

  • Ferrington DA, Krainev AG, Bigelow DJ (1998) Altered turnover of calcium regulatory proteins of the sarcoplasmic reticulum in aged skeletal muscle. J Biol Chem 273(10):5885–5891

    Article  CAS  PubMed  Google Scholar 

  • Fink HA, Ewing SK, Ensrud KE, Barrett-Connor E, Taylor BC, Cauley JA et al (2006) Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab 91(10):3908–3915

    Article  CAS  PubMed  Google Scholar 

  • Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB et al (2014) Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One 9(1):e85805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fitts RH, Peters JR, Dillon EL, Durham WJ, Sheffield-Moore M, Urban RJ (2014) Weekly versus monthly testosterone administration on fast and slow skeletal muscle fibers in older adult males. J Clin Endocrinol Metab 100(2):E223–E231. jc20142759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greendale GA, Edelstein S, Barrett-Connor E (1997) Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo study. J Bone Miner Res 12(11):1833–1843

    Article  CAS  PubMed  Google Scholar 

  • Grossmann M, Zajac JD (2011) Androgen deprivation therapy in men with prostate cancer: how should the side effects be monitored and treated? Clin Endocrinol 74(3):289–293

    Article  Google Scholar 

  • Grossmann M, Cheung AS, Zajac JD (2013) Androgens and prostate cancer; pathogenesis and deprivation therapy. Best Pract Res Clin Endocrinol Metab 27(4):603–616

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Yamashita M, Zhang Q, Zhou Q, Chen D, Reynolds DG et al (2008) Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem 283(34):23084–23092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton EJ, Ghasem-Zadeh A, Gianatti E, Lim-Joon D, Bolton D, Zebaze R et al (2010) Structural decay of bone microarchitecture in men with prostate cancer treated with androgen deprivation therapy. J Clin Endocrinol Metab 95(12):E456–E463

    Article  CAS  PubMed  Google Scholar 

  • Hammes SR, Levin ER (2007) Extranuclear steroid receptors: nature and actions. Endocr Rev 28(7):726–741

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann DB, Komrakova M, Pflug S, von Oertzen M, Saul D, Weiser L et al (2018) Evaluation of ostarine as a selective androgen receptor modulator in a rat model of postmenopausal osteoporosis. J Bone Miner Metab 37(2):243–255

    Article  PubMed  CAS  Google Scholar 

  • Hsu B, Seibel MJ, Cumming RG, Blyth FM, Naganathan V, Bleicher K et al (2016) Progressive temporal change in serum SHBG, but not in serum testosterone or estradiol, is associated with bone loss and incident fractures in older men: the Concord health and ageing in men project. J Bone Miner Res 31(12):2115–2122

    Article  CAS  PubMed  Google Scholar 

  • Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A et al (2005) Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol 63(3):280–293

    Article  CAS  Google Scholar 

  • Jardi F, Laurent MR, Kim N, Khalil R, De Bundel D, Van Eeckhaut A et al (2018a) Testosterone boosts physical activity in male mice via dopaminergic pathways. Sci Rep 8(1):957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jardi F, Laurent MR, Dubois V, Kim N, Khalil R, Decallonne B et al (2018b) Androgen and estrogen actions on male physical activity: a story beyond muscle. J Endocrinol 238(1):R31–R52

    Article  CAS  PubMed  Google Scholar 

  • Kameda T, Mano H, Yuasa T, Mori Y, Miyazawa K, Shiokawa M et al (1997) Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 186(4):489–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T et al (2003) Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci U S A 100(16):9416–9421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khosla S (2010) Update on estrogens and the skeleton. J Clin Endocrinol Metab 95(8):3569–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Katzenellenbogen JA (2006) Hormone-PAMAM dendrimer conjugates: polymer dynamics and tether structure affect ligand access to receptors. Angew Chem Int Ed Eng 45(43):7243–7248

    Article  CAS  Google Scholar 

  • Kousteni S, Bellido T, Plotkin LI, O'Brien CA, Bodenner DL, Han L et al (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104(5):719–730

    CAS  PubMed  Google Scholar 

  • Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O'Brien CA et al (2002) Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298(5594):843–846

    Article  CAS  PubMed  Google Scholar 

  • Kovacheva EL, Hikim AP, Shen R, Sinha I, Sinha-Hikim I (2010) Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, notch, and Akt signaling pathways. Endocrinology 151(2):628–638

    Article  CAS  PubMed  Google Scholar 

  • Krasnoff JB, Basaria S, Pencina MJ, Jasuja GK, Vasan RS, Ulloor J et al (2010) Free testosterone levels are associated with mobility limitation and physical performance in community-dwelling men: the Framingham Offspring Study. J Clin Endocrinol Metab 95(6):2790–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laakkonen EK, Soliymani R, Karvinen S, Kaprio J, Kujala UM, Baumann M et al (2017) Estrogenic regulation of skeletal muscle proteome: a study of premenopausal women and postmenopausal MZ cotwins discordant for hormonal therapy. Aging Cell 16(6):1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent MR, Jardi F, Dubois V, Schollaert D, Khalil R, Gielen E et al (2016) Androgens have antiresorptive effects on trabecular disuse osteopenia independent from muscle atrophy. Bone 93:33–42

    Article  CAS  PubMed  Google Scholar 

  • Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318

    Article  PubMed  CAS  Google Scholar 

  • Maatta JA, Buki KG, Ivaska KK, Nieminen-Pihala V, Elo TD, Kahkonen T et al (2013a) Inactivation of the androgen receptor in bone-forming cells leads to trabecular bone loss in adult female mice. Bonekey Rep 2:440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maatta JA, Buki KG, Gu G, Alanne MH, Vaaraniemi J, Liljenback H et al (2013b) Inactivation of estrogen receptor alpha in bone-forming cells induces bone loss in female mice. FASEB J 27(2):478–488

    Article  CAS  PubMed  Google Scholar 

  • Magnussen LV, Hvid LG, Hermann AP, Hougaard DM, Gram B, Caserotti P et al (2017) Testosterone therapy preserves muscle strength and power in aging men with type 2 diabetes-a randomized controlled trial. Andrology 5(5):946–953

    Article  CAS  PubMed  Google Scholar 

  • Malmstrom TK, Miller DK, Herning MM, Morley JE (2013) Low appendicular skeletal muscle mass (ASM) with limited mobility and poor health outcomes in middle-aged African Americans. J Cachexia Sarcopenia Muscle 4(3):179–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31(3):266–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolagas SC, Kousteni S, Jilka RL (2002) Sex steroids and bone. Recent Prog Horm Res 57:385–409

    Article  CAS  PubMed  Google Scholar 

  • Martin-Millan M, Almeida M, Ambrogini E, Han L, Zhao H, Weinstein RS et al (2010) The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol 24(2):323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinnis MY, Lumia AR, Tetel MJ, Molenda-Figueira HA, Possidente B (2007) Effects of anabolic androgenic steroids on the development and expression of running wheel activity and circadian rhythms in male rats. Physiol Behav 92(5):1010–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger SO, Burnett AL (2016) Impact of recent FDA ruling on testosterone replacement therapy (TRT). Transl Androl Urol 5(6):921–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Miedlich SU, Karamooz N, Hammes SR (2016) Aromatase deficiency in a male patient – case report and review of the literature. Bone 93:181–186

    Article  PubMed  Google Scholar 

  • Mohler ML, Bohl CE, Jones A, Coss CC, Narayanan R, He Y et al (2009) Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem 52(12):3597–3617

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K et al (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130(5):811–823

    Article  CAS  PubMed  Google Scholar 

  • Oner J, Oner H, Sahin Z, Demir R, Ustunel I (2008) Melatonin is as effective as testosterone in the prevention of soleus muscle atrophy induced by castration in rats. Anat Rec (Hoboken) 291(4):448–455

    Article  CAS  Google Scholar 

  • Rana K, Lee NK, Zajac JD, MacLean HE (2014) Expression of androgen receptor target genes in skeletal muscle. Asian J Androl 16(5):675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana K, Chiu MW, Russell PK, Skinner JP, Lee NK, Fam BC et al (2016) Muscle-specific androgen receptor deletion shows limited actions in myoblasts but not in myofibers in different muscles in vivo. J Mol Endocrinol 57(2):125–138

    Article  CAS  PubMed  Google Scholar 

  • Rariy CM, Ratcliffe SJ, Weinstein R, Bhasin S, Blackman MR, Cauley JA et al (2011) Higher serum free testosterone concentration in older women is associated with greater bone mineral density, lean body mass, and total fat mass: the cardiovascular health study. J Clin Endocrinol Metab 96(4):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristic BHV, Sirbu PD, Irizarry-Roman M, Bucs G, Sztanyi I, Binkley N, Orwig D, Neutel J, Homer K, Mancini M, Masamune H, Barker G, Lian B (2018) VK5211, a Novel Selective Androgen Receptor Modulator (SARM), Significantly Improves Lean Body Mass in Hip Fracture Patients: Results of a 12 Week Phase 2 Trial American Society of Bone and Mineral Reserach (ASBMR) annual meeting (Abstract 1072); Montreal, Canada

    Google Scholar 

  • Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  CAS  PubMed  Google Scholar 

  • Schellinger D, Lin CS, Hatipoglu HG, Fertikh D (2001) Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol 22(8):1620–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serra C, Bhasin S, Tangherlini F, Barton ER, Ganno M, Zhang A et al (2011) The role of GH and IGF-I in mediating anabolic effects of testosterone on androgen-responsive muscle. Endocrinology 152(1):193–206

    Article  CAS  PubMed  Google Scholar 

  • Sestak I, Singh S, Cuzick J, Blake GM, Patel R, Gossiel F et al (2014) Changes in bone mineral density at 3 years in postmenopausal women receiving anastrozole and risedronate in the IBIS-II bone substudy: an international, double-blind, randomised, placebo-controlled trial. Lancet Oncol 15(13):1460–1468

    Article  CAS  PubMed  Google Scholar 

  • Silverman SL, Chines AA, Kendler DL, Kung AW, Teglbjaerg CS, Felsenberg D et al (2012) Sustained efficacy and safety of bazedoxifene in preventing fractures in postmenopausal women with osteoporosis: results of a 5-year, randomized, placebo-controlled study. Osteoporos Int 23(1):351–363

    Article  CAS  PubMed  Google Scholar 

  • Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M et al (2002) Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30(1):18–25

    Article  CAS  PubMed  Google Scholar 

  • Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC (1997) Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest 100(7):1755–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder PJ, Bhasin S, Cunningham GR, Matsumoto AM, Stephens-Shields AJ, Cauley JA et al (2016) Effects of testosterone treatment in older men. N Engl J Med 374(7):611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder PJ, Kopperdahl DL, Stephens-Shields AJ, Ellenberg SS, Cauley JA, Ensrud KE et al (2017) Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial. JAMA Intern Med 177(4):471–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivas-Shankar U, Roberts SA, Connolly MJ, O'Connell MD, Adams JE, Oldham JA et al (2010) Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 95(2):639–650

    Article  CAS  PubMed  Google Scholar 

  • Sunters A, Armstrong VJ, Zaman G, Kypta RM, Kawano Y, Lanyon LE et al (2010) Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta-catenin signaling. J Biol Chem 285(12):8743–8758

    Article  CAS  PubMed  Google Scholar 

  • Surampudi PN, Wang C, Swerdloff R (2012) Hypogonadism in the aging male diagnosis, potential benefits, and risks of testosterone replacement therapy. Int J Endocrinol 2012:625434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swift-Gallant A, Monks DA (2013) Androgen receptor expression in satellite cells of the neonatal levator ani of the rat. Dev Neurobiol 73(6):448–454

    Article  CAS  PubMed  Google Scholar 

  • Thakur MK (1988) Molecular mechanism of steroid hormone action during aging. A review Mech Ageing Dev 45(2):93–110

    Article  CAS  PubMed  Google Scholar 

  • Ucer S, Iyer S, Bartell SM, Martin-Millan M, Han L, Kim HN et al (2015) The effects of androgens on murine cortical bone do not require AR or ERalpha signaling in osteoblasts and osteoclasts. J Bone Miner Res 30(7):1138–1149

    Article  CAS  PubMed  Google Scholar 

  • Uebelhart B, Herrmann F, Pavo I, Draper MW, Rizzoli R (2004) Raloxifene treatment is associated with increased serum estradiol and decreased bone remodeling in healthy middle-aged men with low sex hormone levels. J Bone Miner Res 19(9):1518–1524

    Article  CAS  PubMed  Google Scholar 

  • Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25(3):389–425

    Article  CAS  PubMed  Google Scholar 

  • Venken K, Schuit F, Van Lommel L, Tsukamoto K, Kopchick JJ, Coschigano K et al (2005) Growth without growth hormone receptor: estradiol is a major growth hormone-independent regulator of hepatic IGF-I synthesis. J Bone Miner Res 20(12):2138–2149

    Article  CAS  PubMed  Google Scholar 

  • Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM et al (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60(3):324–333

    Article  PubMed  Google Scholar 

  • Weissberger AJ, Ho KK, Lazarus L (1991) Contrasting effects of oral and transdermal routes of estrogen replacement therapy on 24-hour growth hormone (GH) secretion, insulin-like growth factor I, and GH-binding protein in postmenopausal women. J Clin Endocrinol Metab 72(2):374–381

    Article  CAS  PubMed  Google Scholar 

  • Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116(5):1186–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA (2013) Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol Cell Endocrinol 365(2):174–186

    Article  CAS  PubMed  Google Scholar 

  • Wu MV, Manoli DS, Fraser EJ, Coats JK, Tollkuhn J, Honda S et al (2009) Estrogen masculinizes neural pathways and sex-specific behaviors. Cell 139(1):61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Bauman WA, Blitzer RD, Cardozo C (2010) Testosterone-induced hypertrophy of L6 myoblasts is dependent upon Erk and mTOR. Biochem Biophys Res Commun 400(4):679–683

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Freeman G, Cowling BJ, Schooling CM (2013) Testosterone therapy and cardiovascular events among men: a systematic review and meta-analysis of placebo-controlled randomized trials. BMC Med 11:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Sui Z (2013) Deciphering the selective androgen receptor modulators paradigm. Expert Opin Drug Discovery 8(2):191–218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Girgis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Girgis, C.M. (2019). Sex Steroid Hormones and Osteosarcopenia. In: Duque, G. (eds) Osteosarcopenia: Bone, Muscle and Fat Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25890-0_8

Download citation

Publish with us

Policies and ethics