Skip to main content

Osteosarcopenic Obesity

  • Chapter
  • First Online:
  • 541 Accesses

Abstract

The term “osteosarcopenic obesity” describes the presence of osteosarcopenia in obese older adults, and also highlights the important contribution of adipose tissue to processes which lead to skeletal muscle and bone losses during ageing. Obesity is associated with increased rates of falls and disability but is commonly perceived to protect against fractures in older adults. However, beneficial effects of obesity for bone health are likely attributable to increased absolute muscle mass and those with sarcopenia and/or osteopenia/osteoporosis may have significantly higher fracture risk. Few studies to date have explored whether the combination of osteopenia/osteoporosis, sarcopenia and obesity is associated with poorer musculoskeletal health than observed in the presence of only one or two of these conditions. While prospective cohort studies are required to determine the clinical value of osteosarcopenic obesity for disability, falls and fracture prediction, it is clear that health professionals need to consistently diagnose and treat poor bone and muscle health in obese older patients. The most effective interventions for reducing risk of disability, falls and fracture in osteosarcopenic obesity are likely to involve lifestyle modification. This may include caloric restriction to induce fat loss, but with the addition of progressive resistance training and weight-bearing impact exercises, as well as maintenance of adequate protein, vitamin D and calcium intakes, in order to minimize weight loss-associated declines in bone and muscle mass. Nevertheless, randomized controlled trials are required to identify effective treatment strategies for the prevention of disability, falls and fractures in osteosarcopenic obese older adults.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al Snih S, Ottenbacher KJ, Markides KS et al (2007) The effect of obesity on disability vs mortality in older Americans. Arch Intern Med 167:774–780

    Article  PubMed  Google Scholar 

  • Anker SD, Morley JE, Von Haehling S (2016) Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle 7:512–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Aubertin-Leheudre M, Lord C, Labonté M et al (2008) Relationship between sarcopenia and fracture risks in obese postmenopausal women. J Women Aging 20:297–308

    Article  PubMed  Google Scholar 

  • Bachmann KN, Bruno AG, Bredella MA et al (2016) Vertebral strength and estimated fracture risk across the BMI spectrum in women. J Bone Miner Res 31:281–288

    Article  PubMed  Google Scholar 

  • Barazzoni R, Bischoff SC, Boirie Y et al (2018) Sarcopenic obesity: time to meet the challenge. Clin Nutr 37:1787–1793

    Article  PubMed  Google Scholar 

  • Batsis JA, Barre LK, Mackenzie TA et al (2013) Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual-energy x-ray absorptiometry data from the national health and nutrition examination survey 1999–2004. J Am Geriatr Soc 61:974–980

    Article  PubMed  Google Scholar 

  • Baumgartner R (2000) Body composition in healthy aging. Ann N Y Acad Sci 904:437–448

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner RN, Wayne SJ, Waters DL et al (2004) Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res 12:1995–2004

    Article  PubMed  Google Scholar 

  • Bettis T, Kim B-J, Hamrick MW (2018) Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int 29:1713–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bijlsma A, Meskers C, Westendorp R et al (2012) Chronology of age-related disease definitions: osteoporosis and sarcopenia. Ageing Res Rev 11:320–324

    Article  CAS  PubMed  Google Scholar 

  • Binkley N, Buehring B (2009) Beyond FRAX®: It’s time to consider “sarco-osteopenia”. J Clin Densitom 12:413–416

    Article  PubMed  Google Scholar 

  • Binnerts A, Deurenberg P, Swart GR et al (1992) Body composition in growth hormone-deficient adults. Am J Clin Nutr 55:918–923

    Article  CAS  PubMed  Google Scholar 

  • Bouchard DR, Janssen I (2010) Dynapenic-obesity and physical function in older adults. J Gerontol A Biol Sci Med Sci 65:71–77

    Article  PubMed  Google Scholar 

  • Bouchard DR, Dionne IJ, Brochu M (2009) Sarcopenic/obesity and physical capacity in older men and women: data from the nutrition as a determinant of successful aging (NuAge)—the Quebec Longitudinal Study. Obesity 17:2082–2088

    Article  PubMed  Google Scholar 

  • Bredella MA, Lin E, Gerweck AV et al (2012) Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metabol 97:4115–4122

    Article  CAS  Google Scholar 

  • Bruyere O, Cavalier E, Reginster JY (2017) Vitamin D and osteosarcopenia: an update from epidemiological studies. Curr Opin Clin Nutr Metab Care 20:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buehring B, Krueger D, Binkley N (2013) Effect of including historical height and radius BMD measurement on sarco-osteoporosis prevalence. J Cachexia Sarcopenia Muscle 4:47–54

    Article  PubMed  Google Scholar 

  • Buehring B, Hansen KE, Lewis BL et al (2018) Dysmobility syndrome independently increases fracture risk in the osteoporotic fractures in men (MrOS) prospective cohort study. J Bone Miner Res 33:1622–1629

    Article  PubMed  Google Scholar 

  • Burghardt AJ, Issever AS, Schwartz AV et al (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metabol 95:5045–5055

    Article  CAS  Google Scholar 

  • Chalhoub D, Cawthon PM, Ensrud KE et al (2015) Risk of nonspine fractures in older adults with sarcopenia, low bone mass, or both. J Am Geriatr Soc 63:1733–1740

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan MY, Frost SA, Center JR et al (2014) Relationship between body mass index and fracture risk is mediated by bone mineral density. J Bone Miner Res 29:2327–2335

    Article  PubMed  Google Scholar 

  • Chang C-I, Huang K-C, Chan D-C et al (2014) The impacts of sarcopenia and obesity on physical performance in the elderly. Obes Res Clin Pract. https://doi.org/10.1016/j.orcp.2014.1008.1003

  • Cho B-Y, Seo D-C, Lin H-C et al (2018) BMI and central obesity with falls among community-dwelling older adults. Am J Prev Med 54:e59–e66

    Article  PubMed  Google Scholar 

  • Choquette S, Bouchard D, Doyon C et al (2010) Relative strength as a determinant of mobility in elders 67–84 years of age. A nuage study: nutrition as a determinant of successful aging. J Nutr Health Aging 14:190–195

    Article  CAS  PubMed  Google Scholar 

  • Chuang J-F, Rau C-S, Liu H-T et al (2016) Obese patients who fall have less injury severity but a longer hospital stay than normal-weight patients. World J Emerg Surg 11:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung JH, Hwang HJ, Shin HY et al (2016) Association between sarcopenic obesity and bone mineral density in middle-aged and elderly Korean. Ann Nutr Metab 68:77–84

    Article  CAS  PubMed  Google Scholar 

  • Compston J (2013) Obesity and bone. Curr Osteoporos Rep 11:30–35

    Article  PubMed  Google Scholar 

  • Compston JE, Watts NB, Chapurlat R et al (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Compston JE, Wyman A, Fitzgerald G et al (2016) Increase in fracture risk following unintentional weight loss in postmenopausal women: the global longitudinal study of osteoporosis in women. J Bone Miner Res 31:1466–1472

    Article  PubMed  Google Scholar 

  • Cross M, Smith E, Hoy D et al (2014) The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 Study. Ann Rheum Dis 73:1323–1330

    Article  PubMed  Google Scholar 

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31

    Article  PubMed  Google Scholar 

  • Cunha PM, Ribeiro AS, Tomeleri CM et al (2018) The effects of resistance training volume on osteosarcopenic obesity in older women. J Sports Sci 36:1564–1571

    Article  PubMed  Google Scholar 

  • Delmonico MJ, Harris TB, Visser M et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90:1579–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennison EM, Sayer AA, Cooper C (2017) Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat Rev Rheumatol Adv 13:340–347

    Article  CAS  Google Scholar 

  • Drey M, Sieber CC, Bertsch T et al (2016) Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res 28:895–899

    Article  PubMed  Google Scholar 

  • Dufour AB, Hannan MT, Murabito JM et al (2013) Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham Study. J Gerontol A Biol Sci Med Sci 68:168–174

    Article  PubMed  Google Scholar 

  • Dutra MT, Avelar BP, Souza VC et al (2017) Relationship between sarcopenic obesity-related phenotypes and inflammatory markers in postmenopausal women. Clin Physiol Funct Imaging 37:205–210

    Article  CAS  PubMed  Google Scholar 

  • Edwards MH, Ward KA, Ntani G et al (2015) Lean mass and fat mass have differing associations with bone microarchitecture assessed by high resolution peripheral quantitative computed tomography in men and women from the Hertfordshire Cohort Study. Bone 81:145–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Farr JN, Drake MT, Amin S et al (2014) In vivo assessment of bone quality in postmenopausal women with Type 2 diabetes. J Bone Miner Res 29:787–795

    Article  PubMed  Google Scholar 

  • Felson DT, Zhang Y (1998) An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheumatol 41:1343–1355

    Article  CAS  Google Scholar 

  • Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International Working Group on Sarcopenia. J Am Med Dir Assoc 12:249–256

    Article  PubMed  Google Scholar 

  • Finkelstein EA, Chen H, Prabhu M et al (2007) The relationship between obesity and injuries among US adults. Am J Health Promot 21:460–468

    Article  PubMed  Google Scholar 

  • Follis S, Cook A, Bea JW et al (2018) Association between sarcopenic obesity and falls in a multiethnic cohort of postmenopausal women. J Am Geriatr Soc 66:2314–2320

    Article  PubMed  PubMed Central  Google Scholar 

  • Frisoli A Jr, Chaves PH, Ingham SJM et al (2011) Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: results from the Women’s Health and Aging Study (WHAS) II. Bone 48:952–957

    Article  PubMed  Google Scholar 

  • Garito T, Roubenoff R, Hompesch M et al (2018) Bimagrumab improves body composition and insulin sensitivity in insulin-resistant individuals. Diabetes Obes Metab 20:94–102

    Article  CAS  PubMed  Google Scholar 

  • Gianoudis J, Bailey CA, Ebeling PR et al (2013) Effects of a targeted multi-modal exercise program incorporating high speed power training on falls and fracture risk factors in older adults: a community-based randomised controlled trial. J Bone Miner Res 29:182–191

    Article  Google Scholar 

  • Hamrick M, Mcgee-Lawrence ME, Frechette DM (2016) Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Front Endocrinol (Lausanne) 7:69

    Article  Google Scholar 

  • Harris R, Chang Y, Beavers K et al (2017) Risk of fracture in women with sarcopenia, low bone mass, or both. J Am Geriatr Soc 65:2673–2678

    Article  PubMed  PubMed Central  Google Scholar 

  • Hars M, Biver E, Chevalley T et al (2016) Low lean mass predicts incident fractures independently from FRAX: a prospective cohort study of recent Retirees. J Bone Miner Res 31:2048–2056

    Article  CAS  PubMed  Google Scholar 

  • He H, Liu Y, Tian Q et al (2016) Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int 27:473–482

    Article  CAS  PubMed  Google Scholar 

  • Heber D, Ingles S, Ashley JM et al (1996) Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am J Clin Nutr 64:472–477

    Article  Google Scholar 

  • Himes CL, Reynolds SL (2012) Effect of obesity on falls, injury, and disability. J Am Geriatr Soc 60:124–129

    Article  PubMed  Google Scholar 

  • Hirschfeld HP, Kinsella R, Duque G (2017) Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int 28:2781–2790

    Article  CAS  PubMed  Google Scholar 

  • Hita-Contreras F, Martínez-Amat A, Cruz-Díaz D et al (2015) Osteosarcopenic obesity and fall prevention strategies. Maturitas 80:126–132

    Article  PubMed  Google Scholar 

  • Ho-Pham LT, Campbell LV, Nguyen TV (2011) More on body fat cutoff points. Mayo Clin Proc 86:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Huo YR, Suriyaarachchi P, Gomez F et al (2015) Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc 16:290–295

    Article  PubMed  Google Scholar 

  • Huo YR, Suriyaarachchi P, Gomez F et al (2016) Phenotype of sarcopenic obesity in older individuals with a history of falling. Arch Gerontol Geriatr 65:255–259

    Article  PubMed  Google Scholar 

  • Ilich JZ (2017) Another impairment in older age: what does osteosarcopenic obesity syndrome mean for middle-aged and older women? J Am Med Dir Assoc 18:648–650

    Article  PubMed  Google Scholar 

  • Ilich JZ, Kelly OJ, Inglis JE et al (2014) Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 15:51–60

    Article  CAS  PubMed  Google Scholar 

  • Ilich J, Inglis J, Kelly O et al (2015) Osteosarcopenic obesity is associated with reduced handgrip strength, walking abilities, and balance in postmenopausal women. Osteoporos Int 26:2587–2595

    Article  CAS  PubMed  Google Scholar 

  • Ilich JZ, Kelly OJ, Inglis JE (2016) Osteosarcopenic obesity syndrome: what is it and how can it be identified and diagnosed? Curr Gerontol Geriatr Res 2016:7325973

    Article  PubMed  PubMed Central  Google Scholar 

  • Inacio M, Ryan AS, Bair WN et al (2014) Gluteal muscle composition differentiates fallers from non-fallers in community dwelling older adults. BMC Geriatr 14:1471–2318

    Article  Google Scholar 

  • Inglis JE, Ilich JZ (2015) The microbiome and osteosarcopenic obesity in older individuals in long-term care facilities. Curr Osteoporos Rep 13:358–362

    Article  PubMed  Google Scholar 

  • Inglis J, Kelly O, Ilich J (2015) Assessing nutritional and Vitamin D status of postmenopausal obese and osteosarcopenic obese women. FASEB J 29:738.732

    Google Scholar 

  • Inglis JE, Jafarinasabian P, Hebrock H et al (2017) Older women with osteosarcopenic obesity have lower handgrip strength and knee extension strength than osteopenic or obese-only women. Adv Nutr Intl Rev J 8:9–9

    Google Scholar 

  • Johansson H, Kanis JA, Odén A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29:223–233

    Article  PubMed  Google Scholar 

  • Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4:368–381

    Article  CAS  PubMed  Google Scholar 

  • Kanis J, Johnell O, Oden A et al (2000) Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone 27:585–590

    Article  CAS  PubMed  Google Scholar 

  • Kelly OJ, Gilman JC, Kim Y et al (2016) Micronutrient intake in the etiology, prevention and treatment of osteosarcopenic obesity. Curr Aging Sci 9:260–278

    Article  CAS  PubMed  Google Scholar 

  • Kelly OJ, Gilman JC, Kim Y et al (2017) Macronutrient intake and distribution in the etiology, prevention and treatment of osteosarcopenic obesity. Curr Aging Sci 10:83–105

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-P, Kim S, Joh J-Y et al (2014) Effect of interaction between dynapenic component of the European Working Group on sarcopenia in older people sarcopenia criteria and obesity on activities of daily living in the elderly. J Am Med Dir Assoc 15:e1-371.e375

    Article  Google Scholar 

  • Kim J, Lee Y, Kye S et al (2017a) Diet quality and osteosarcopenic obesity in community-dwelling adults 50 years and older. Maturitas 104:73–79

    Article  PubMed  Google Scholar 

  • Kim J, Lee Y, Kye S et al (2017b) Association of serum vitamin D with osteosarcopenic obesity: Korea National Health and Nutrition Examination Survey 2008–2010. J Cachexia Sarcopenia Muscle 8:259–266

    Article  PubMed  Google Scholar 

  • Kim JH, Hong AR, Choi HJ et al (2017c) Sex-based differences in the association between body composition and incident fracture risk in Koreans. Sci Rep 7:5975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SH, Yi SW, Yi JJ et al (2018) Association between body mass index and the risk of hip fracture by sex and age: A prospective cohort study. J Bone Miner Res 33:1603–1611

    Article  PubMed  Google Scholar 

  • Kuk JL, Saunders TJ, Davidson LE et al (2009) Age-related changes in total and regional fat distribution. Ageing Res Rev 8:339–348

    Article  PubMed  Google Scholar 

  • Lang T, Cauley JA, Tylavsky F et al (2010) Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 25:513–519

    Article  PubMed  Google Scholar 

  • Laurent MR, Dubois V, Claessens F et al (2016) Muscle-bone interactions: from experimental models to the clinic? A critical update. Mol Cell Endocrinol 432:14–36

    Article  CAS  PubMed  Google Scholar 

  • Leblanc ES, Wang PY, Lee CG et al (2011) Higher testosterone levels are associated with less loss of lean body mass in older men. J Clin Endocrinol Metabol 96:3855–3863

    Article  CAS  Google Scholar 

  • Leslie WD, Orwoll ES, Nielson CM et al (2014) Estimated lean mass and fat mass differentially affect femoral bone density and strength index but are not FRAX independent risk factors for fracture. J Bone Miner Res 29:2511–2519

    Article  PubMed  Google Scholar 

  • Li X, Gong X, Jiang W (2017) Abdominal obesity and risk of hip fracture: a meta-analysis of prospective studies. Osteoporos Int:(10):2747–2757

    Article  CAS  PubMed  Google Scholar 

  • Liu C-T, Broe KE, Zhou Y et al (2016) Visceral adipose tissue is associated with bone microarchitecture in the Framingham Osteoporosis Study. J Bone Miner Res 32(1):143–150

    Article  PubMed  CAS  Google Scholar 

  • Lotito A, Teramoto M, Cheung M et al (2017) Serum parathyroid hormone responses to Vitamin D supplementation in overweight/obese adults: a systematic review and meta-analysis of randomized clinical trials. Nutrients 9:pii:e241

    Article  CAS  Google Scholar 

  • Lou Y, Edmonds SW, Jones MP et al (2016) Predictors of bone mineral density testing among older women on medicare. Osteoporos Int:(12):3577–3586

    Article  CAS  PubMed  Google Scholar 

  • Lundin H, Sääf M, Strender L-E et al (2016) Gait speed and one-leg standing time each add to the predictive ability of FRAX. Osteoporos Int 28:179–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyritis G, Rizou S (2016) A revision in the definition of osteoporosis. J Frailty Sarcopenia Falls 1:1–3

    Article  Google Scholar 

  • Meng NH, Li CI, Liu CS et al (2014) Comparison of height-and weight-adjusted sarcopenia in a Taiwanese metropolitan older population. Geriatr Gerontol Intl 15(1):45-53

    Google Scholar 

  • Mitchell RJ, Lord SR, Harvey LA et al (2014) Associations between obesity and overweight and fall risk, health status and quality of life in older people. Aust N Z J Public Health 38:13–18

    Article  PubMed  Google Scholar 

  • Muscaritoli M, Anker SD, Argilés J et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 29:154–159

    Article  CAS  PubMed  Google Scholar 

  • Nielson CM, Srikanth P, Orwoll ES (2012) Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res 27:1–10

    Article  PubMed  Google Scholar 

  • Ormsbee M, Prado C, Ilich J et al (2014) Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle:(3):183–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Öztürk ZA, Türkbeyler İH, Abiyev A et al (2018) Health related quality of life and fall risk associated with age related body composition changes; sarcopenia, obesity and sarcopenic obesity. Intern Med J 48:973–981

    Article  PubMed  Google Scholar 

  • Park S, Na W, Sohn C (2018) Relationship between osteosarcopenic obesity and dietary inflammatory index in postmenopausal Korean women: 2009 to 2011 Korea National Health and Nutrition Examination Surveys. J Clin Biochem Nutr 63:211–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasco JA, Gould H, Brennan SL et al (2014) Musculoskeletal deterioration in men accompanies increases in body fat. Obesity 22(3):863–867

    Article  PubMed  Google Scholar 

  • Pasco JA, Sui SX, Tembo MC et al (2018) Sarcopenic obesity and falls in the elderly. J Gerontol Geriatr Res 7:465

    Article  Google Scholar 

  • Patsch JM, Burghardt AJ, Yap SP et al (2013a) Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 28:313–324

    Article  PubMed  Google Scholar 

  • Patsch JM, Li X, Baum T et al (2013b) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 28:1721–1728

    Article  PubMed  Google Scholar 

  • Peeters A, Backholer K (2012) Is the health burden associated with obesity changing? Am J Epidemiol 176:840–845

    Article  PubMed  Google Scholar 

  • Perna S, Spadaccini D, Avanzato I et al (2018) OsteoSarcopenic visceral obesity and osteosarcopenic subcutaneous obesity. Two new phenotypes of sarcopenia. prevalence, impact on metabolic profile and risk factors. J Aging Res 2018:6147426

    Article  PubMed  PubMed Central  Google Scholar 

  • Reginster J-Y, Beaudart C, Buckinx F et al (2016) Osteoporosis and sarcopenia: two diseases or one? Curr Opin Clin Nutr Metab Care 19:31–36

    Article  PubMed  Google Scholar 

  • Reijnierse EM, De Van Der Schueren MAE, Trappenburg MC et al (2017) Lack of knowledge and availability of diagnostic equipment could hinder the diagnosis of sarcopenia and its management. PLoS One 12:e0185837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rolland Y, Lauwers-Cances V, Cristini C et al (2009) Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l’OSteoporose) Study. Am J Clin Nutr 89:1895–1900

    Article  CAS  PubMed  Google Scholar 

  • Romero-Corral A, Somers VK, Sierra-Johnson J et al (2008) Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes 32:959–966

    Article  CAS  Google Scholar 

  • Rooks D, Praestgaard J, Hariry S et al (2017) Treatment of Sarcopenia with Bimagrumab: results from a Phase II, Randomized, Controlled, Proof-of-Concept Study. J Am Geriatr Soc 65:1988–1995

    Article  PubMed  Google Scholar 

  • Rosenberg IH (1989) Summary comments. Am J Clin Nutr 50:1231–1233

    Article  Google Scholar 

  • Roubenoff R (2000) Sarcopenic obesity: Does muscle loss cause fat gain? Lessons from rheumatoid arthritis and osteoarthritis. Ann N Y Acad Sci 904:553–557

    Article  CAS  PubMed  Google Scholar 

  • Samu S, Juha S, Toni R et al (2013) Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 75:175–180

    Article  Google Scholar 

  • Schafer AL, Vittinghoff E, Lang TF et al (2010) Fat infiltration of muscle, diabetes, and clinical fracture risk in older adults. J Clin Endocrinol Metabol 95:E368–E372

    Article  Google Scholar 

  • Schrager M, Metter EJ, Simonsick EM et al (2007) Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol 102:919–925

    Article  PubMed  Google Scholar 

  • Scott D, Sanders K, Aitken D et al (2014) Sarcopenic obesity and dynapenic obesity: 5-year associations with falls risk in middle-aged and older adults. Obesity 22:1568–1574

    Article  PubMed  Google Scholar 

  • Scott D, Daly RM, Sanders KM et al (2015) Fall and fracture risk in sarcopenia and dynapenia with and without obesity: the role of lifestyle interventions. Curr Osteoporos Rep 13:235–244

    Article  PubMed  Google Scholar 

  • Scott D, Chandrasekara SD, Laslett LL et al (2016) Associations of sarcopenic obesity and dynapenic obesity with bone mineral density and incident fractures over 5–10 years in community-dwelling older adults. Calcif Tissue Int 99:30–42

    Article  CAS  PubMed  Google Scholar 

  • Scott D, Seibel M, Cumming R et al (2017) Sarcopenic obesity and its temporal associations with changes in bone mineral density, incident falls and fractures in older men: The Concord Health and Ageing in Men Project. J Bone Miner Res 32:575–583

    Article  CAS  PubMed  Google Scholar 

  • Scott D, Duque G, Ebeling PR (2018a) Does obesity reduce risk for osteoporosis and fractures in older adults? Intern Med J 48:104–105

    Article  PubMed  Google Scholar 

  • Scott D, Johansson J, Mcmillan LB et al (2018b) Mid-calf skeletal muscle density and its associations with physical activity, bone health and incident 12-month falls in older adults: the healthy ageing initiative. Bone 120:446–451

    Article  PubMed  Google Scholar 

  • Scott D, Seibel M, Cumming R et al (2018c) Does combined osteopenia/osteoporosis and sarcopenia confer greater risk of falls and fracture than either condition alone in older men? The Concord Health and Ageing in Men Project. J Gerontol A Biol Sci Med Sci. 74(6):827–834

    Article  Google Scholar 

  • Scott D, Shore-Lorenti C, Mcmillan L et al (2018d) Associations of components of sarcopenic obesity with bone health and balance in older adults. Arch Gerontol Geriatr 75:125–131

    Article  PubMed  Google Scholar 

  • Sheu Y, Marshall L, Holton K et al (2013) Abdominal body composition measured by quantitative computed tomography and risk of non-spine fractures: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int 24:2231–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sornay-Rendu E, Boutroy S, Vilayphiou N et al (2013) In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J Bone Miner Res 28:1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Stenholm S, Harris TB, Rantanen T et al (2008a) Sarcopenic obesity – definition, etiology and consequences. Curr Opin Clin Nutr Metab Care 11:693–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Stenholm S, Rantanen T, Heliövaara M et al (2008b) The mediating role of C-reactive protein and handgrip strength between obesity and walking limitation. J Am Geriatr Soc 56:462–469

    Article  PubMed  Google Scholar 

  • Stenholm S, Alley D, Bandinelli S et al (2009) The effect of obesity combined with low muscle strength on decline in mobility in older persons: results from the InCHIANTI Study. Int J Obes 33:635–644

    Article  CAS  Google Scholar 

  • Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Suriyaarachchi P, Gomez F, Curcio CL et al (2018) High parathyroid hormone levels are associated with osteosarcopenia in older individuals with a history of falling. Maturitas 113:21–25

    Article  CAS  PubMed  Google Scholar 

  • Szlejf C, Parra-Rodríguez L, Rosas-Carrasco O (2017) Osteosarcopenic obesity: prevalence and relation with frailty and physical performance in middle-aged and older women. J Am Med Dir Assoc 18:733.e731–733.e735

    Article  Google Scholar 

  • Villareal DT, Chode S, Parimi N et al (2011) Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med 364:1218–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villareal DT, Aguirre L, Gurney AB et al (2017) Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med 376:1943–1955

    Article  PubMed  PubMed Central  Google Scholar 

  • Visser M, Schaap LA (2011) Consequences of sarcopenia. Clin Geriatr Med 27:387–399

    Article  PubMed  Google Scholar 

  • Walls HL, Magliano DJ, Stevenson CE et al (2011) Projected progression of the prevalence of obesity in Australia. Obesity 20:872–878

    Article  PubMed  Google Scholar 

  • Waters D, Hale L, Grant A et al (2010) Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders. Osteoporos Int 21:351–357

    Article  CAS  PubMed  Google Scholar 

  • Watson SL, Weeks BK, Weis LJ et al (2018) High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: The LIFTMOR randomized controlled trial. J Bone Miner Res 33:211–220

    Article  PubMed  Google Scholar 

  • Watts JJ, Abimanyi-Ochom J, Sanders KM (2013) Osteoporosis costing all Australians: a new burden of disease analysis–2012 to 2022. Osteoporosis Australia, Glebe

    Google Scholar 

  • Yang M, Ding X, Luo L et al (2014) Disability associated with obesity, dynapenia and dynapenic-obesity in chinese older adults. J Am Med Dir Assoc 15:150.e111–150.e116

    Google Scholar 

  • Yang M, Jiang J, Hao Q et al (2015) Dynapenic obesity and lower extremity function in elderly adults. J Am Med Dir Assoc 16:31–36

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Leung J, Woo J (2014a) Incremental predictive value of sarcopenia for incident fracture in an elderly chinese cohort: results from the osteoporotic fractures in men (MrOs) study. J Am Med Dir Assoc 15:551–558

    Article  PubMed  Google Scholar 

  • Yu R, Leung J, Woo J (2014b) Sarcopenia combined With FRAX probabilities improves fracture risk prediction in older Chinese men. J Am Med Dir Assoc 15:918–923

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scott, D. (2019). Osteosarcopenic Obesity. In: Duque, G. (eds) Osteosarcopenia: Bone, Muscle and Fat Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25890-0_14

Download citation

Publish with us

Policies and ethics