Skip to main content

Mathematical Models of the Tear Film

  • Chapter
  • First Online:
Ocular Fluid Dynamics

Abstract

The complex dynamics of the tear film are affected by its many processes and components. Mathematical models of the tear film allow the selective elimination or inclusion of various effects that are not otherwise possible in human subjects. Such models have been able to provide local estimates of osmolarity in tear break up (TBU), for example, which to our knowledge cannot be measured directly. Models also suggest that different modes of TBU must be considered to make sense of in vivo data regarding response of the ocular epithelia and causes of dry eye. More complex models that include tear film formation via blinking are within our grasp, which will no doubt extend our knowledge of the tear film, its dynamics, and its role in ocular surface health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajaev, V.S., Homsy, G.: Steady vapor bubbles in rectangular microchannels. J. Colloid Interface Sci. 240, 259–271 (2001)

    Article  Google Scholar 

  2. Allouche, M., Abderrahmane, H.A., Djouadi, S.M., Mansouri, K.: Influence of curvature on tear film dynamics. Euro. J. Mech. B Fluids 66, 81–91 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, S., Bruenner, H., Langenbucher, A.: Simultaneous examination of tear film break-up and the lipid layer of the human eye: A novel model eye for time course simulation of physiologic tear film behavior (part 2). Z. Med. Phys. 20, 316–319 (2010)

    Article  Google Scholar 

  4. Arnold, S., Walter, A., Eppig, T., Bruenner, H., Langenbucher, A.: Simultaneous examination of tear film break-up and the lipid layer of the human eye: A novel sensor design (part 1). Z. Med. Phys. 20, 309–315 (2010)

    Article  Google Scholar 

  5. Aydemir, E., Breward, C.J.W., Witelski, T.P.: The effect of polar lipids on tear film dynamics. Bull. Math. Biol. 73, 1171–1201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Begley, C.G., Himebaugh, N., Renner, D., Liu, H., Chalmers, R., Simpson, T., Varikooty, J.: Tear breakup dynamics: a technique for quantifying tear film instability. Optom. Vis. Sci. 83(1), 15–21 (2006)

    Article  Google Scholar 

  7. Begley, C.G., Simpson, T., Liu, H., Salvo, E., Wu, Z., Bradley, A., Situ, P.: Quantative analysis of tear film fluorescence and discomfort during tear film instability and thinning. Invest. Ophthalmol. Vis. Sci. 54, 2645–2653 (2013)

    Article  Google Scholar 

  8. Berger, R.E., Corrsin, S.: A surface tension gradient mechanism for driving the pre-corneal tear film after a blink. J. Biomech. 7, 225–238 (1974)

    Article  Google Scholar 

  9. Bhamla, M.S., Chai, C., Alvarez-Valenzuela, M.A., Tajuelo, J., Fuller, G.G.: Interfacial mechanisms for stability of surfactant-laden films. PLOS One 12, e0175,753 (2017)

    Article  Google Scholar 

  10. Bhamla, M.S., Chai, C., Rabiah, N.I., Frostad, J.M., Fuller, G.G.: Instability and breakup of model tear films. Invest. Ophthalmol. Vis. Sci. 57, 949–958 (2016)

    Article  Google Scholar 

  11. Bhamla, M.S., Giacomin, C.E., Balemansc, C., Fuller, G.G.: Influence of interfacial rheology on drainage from curved surfaces. Soft Matter 10, 6917–6925 (2014)

    Article  Google Scholar 

  12. Blackie, C.A., Solomon, J.D., Scaffidi, R.C., Greiner, J.V., Lemp, M.A., Korb, D.R.: The relationship between dry eye symptoms and lipid layer thickness. Cornea 28, 789–794 (2009)

    Article  Google Scholar 

  13. Braun, R.J.: Dynamics of the tear film. Annu. Rev. Fluid Mech. 44, 267–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Braun, R.J., Driscoll, T.A., Begley, C.G., King-Smith, P.E., Siddique, J.I.: On tear film breakup (TBU): Dynamics and imaging. Math. Med. Biol. 45, 145–180 (2018)

    Article  MATH  Google Scholar 

  15. Braun, R.J., Fitt, A.D.: Modeling the drainage of the precorneal tear film after a blink. Math. Med. Biol. 20, 1–28 (2003)

    Article  MATH  Google Scholar 

  16. Braun, R.J., Gewecke, N., Begley, C.G., King-Smith, P.E., Siddique, J.I.: A model for tear film thinning with osmolarity and fluorescein. Invest. Ophthalmol. Vis. Sci. 55, 1133–1142 (2014)

    Article  Google Scholar 

  17. Braun, R.J., King-Smith, P.E., Begley, C.G., Li, L., Gewecke, N.R.: Dynamics and function of the tear film in relation to the blink cycle. Prog. Retin. Eye Res. 45, 132–164 (2015)

    Article  Google Scholar 

  18. Braun, R.J., Usha, R., McFadden, G.B., Driscoll, T.A., Cook, L.P., King-Smith, P.E.: Thin film dynamics on a prolate spheroid with application to the cornea. J. Eng. Math. 73, 121–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bron, A., Tiffany, J., Gouveia, S., Yokoi, N., Voon, L.: Functional aspects of the tear film lipid layer. Exp. Eye Res. 78, 347–360 (2004)

    Article  Google Scholar 

  20. Bruna, M., Breward, C.J.W.: The influence of nonpolar lipids on tear film dynamics. J. Fluid Mech. 746, 565–605 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Butovich, I.A.: Tear film lipids. Exp. Eye Res. 117, 4–27 (2013)

    Article  Google Scholar 

  22. Butovich, I.A., Lu, H., McMahon, A., Kelelson, H., Senchyna, M., Meadows, D., Campbell, E., Molai, M., Linsenhardt, E.: Biophysical and morphological evaluation of human normal and dry eye meibum using hot stage polarized light microscopy. Invest. Ophthalmol. Vis. Sci. 55, 87–101 (2014)

    Article  Google Scholar 

  23. Casalini, T., Salvalaglio, M., Perale, G., Masi, M., Cavallotti, C.: Diffusion and aggregation of sodium fluorescein in aqueous solutions. J. Phys. Chem. B 115, 12,896–12,904 (2011)

    Google Scholar 

  24. Cerretani, C.F., Radke, C.J.: Tear dynamics in healthy and dry eyes. Curr. Eye Res. 39, 580–595 (2014)

    Article  Google Scholar 

  25. Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C.K., Liu, Z., Nelson, J.D., Nichols, J.J., Tsubota, K., et al.: TFOS DEWS-II definition and classification report. Ocul. Surf. 15(3), 276–283 (2017)

    Article  Google Scholar 

  26. Craig, J.P., Tomlinson, A.: Importance of the lipid layer in human tear film stability and evaporation. Optom. Vis. Sci. 74, 8–13 (1997)

    Article  Google Scholar 

  27. Cruz, A.A.V., Garcia, D.M., Pinto, C.T., Cechetti, S.P.: Spontaneous eyeblink activity. Ocul. Surf. 9, 29–41 (2011)

    Article  Google Scholar 

  28. Dartt, D.A.: Neural regulation of lacrimal gland secretory processes: Relevance in dry eye diseases. Prog. Ret. Eye Res. 28(3), 155–177 (2009)

    Article  Google Scholar 

  29. Dartt, D.A., Hodges, R.R., Zoukhri, D.: Tears and their secretion. In: J. Fischbarg (ed.) The Biology of the Eye, Advances in Organ Biology, vol. 10, pp. 21–82. Elsevier (2005)

    Google Scholar 

  30. Deng, Q., Braun, R.J., Driscoll, T.A.: Heat transfer and tear film dynamics over multiple blink cycles. Phys. Fluids 26, 071,901 (2014)

    Article  MATH  Google Scholar 

  31. Deng, Q., Driscoll, T.A., Braun, R.J., King-Smith, P.E.: A model for the tear film and ocular surface temperature for partial blinks. Interfacial Phen. Ht. Trans. 1, 357–381 (2013)

    Article  Google Scholar 

  32. Doane, M.G.: Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink. Am. J. Ophthalmol. 89, 507–516 (1980)

    Article  Google Scholar 

  33. Driscoll, T.A., Braun, R.J., Brosch, J.K.: Simulation of parabolic flow on an eye-shaped domain with moving boundary. J. Eng. Math. 111, 111–126 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Efron, N., Young, G., Brennan, N.A.: Ocular surface temperature. Curr. Eye. Res. 8, 901–906 (1989)

    Google Scholar 

  35. Gaffney, E.A., Tiffany, J.M., Yokoi, N., Bron, A.J.: A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye. Prog. Retinal Eye Res. 29, 59–78 (2010)

    Article  Google Scholar 

  36. Gilbard, J.P., Farris, R.L., Santamaria, J.: Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch. Ophthalmol. 96, 677–681 (1978)

    Article  Google Scholar 

  37. Goto, E., Tseng, S.C.G.: Kinetic analysis of tear interference images in aqueous tear deficiency dry eye before and after punctal occlusion. Invest. Ophthalmol. Vis. Sci. 44, 1897–1905 (2003)

    Article  Google Scholar 

  38. Greer, J.B., Bertozzi, A.L., Sapiro, G.: Fourth order partial differential equations on general geometries. J. Comput. Phys. 216(1), 216–246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Harrison, W.W., Begley, C.G., Liu, H., Chen, M., Garcia, M., Smith, J.A.: Menisci and fullness of the blink in dry eye. Optom. Vis. Sci. 85, 706–714 (2008)

    Article  Google Scholar 

  40. Henshaw, W.D.: Ogen: the overture overlapping grid generator. Tech. Rep. UCRL-MA-132237, Lawrence Livermore National Laboratory (2002)

    Google Scholar 

  41. Heryudono, A., Braun, R.J., Driscoll, T.A., Cook, L.P., Maki, K.L., King-Smith, P.E.: Single-equation models for the tear film in a blink cycle: Realistic lid motion. Math. Med. Biol. 24, 347–377 (2007)

    Article  MATH  Google Scholar 

  42. Himebaugh, N., Wright, A.R., Bradley, A., Begley, C.G., Thibos, L.N.: Use of retroillumination to visualize optical aberrations caused by tear film break-up. Optom. Vis. Sci. 80, 69–78 (2003)

    Article  Google Scholar 

  43. Hirata, H., Mizerska, K., Dallacasagrande, V., Rosenblatt, M.I.: Estimating the osmolarities of tears during evaporation through the “eyes of the corneal nerves. Invest. Ophthalmol. Vis. Sci. 58, 168–178 (2017)

    Article  Google Scholar 

  44. Holly, F.: Formation and rupture of the tear film. Exp. Eye Res. 15, 515–525 (1973)

    Article  Google Scholar 

  45. Jensen, O.E., Grotberg, J.B.: The spreading of heat or soluble surfactant along a thin liquid film. Phys. Fluids A 75, 58–68 (1993)

    Article  MATH  Google Scholar 

  46. Jones, M.B., McElwain, D.L.S., Fulford, G.R., Collins, M.J., Roberts, A.P.: The effect of the lipid layer on tear film behavior. Bull. Math. Biol. 68, 1355–81 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jones, M.B., Please, C.P., McElwain, D.L.S., Fulford, G.R., Roberts, A.P., Collins, M.J.: Dynamics of tear film deposition and draining. Math. Med. Biol. 22, 265–88 (2005)

    Article  MATH  Google Scholar 

  48. Jossic, L., Lefevre, P., de Loubens, C., Magnin, A., Corre, C.: The fluid mechanics of shear-thinning tear substitutes. J. Non-Newtonian Fluid Mech. 161, 1–9 (2009)

    Article  MATH  Google Scholar 

  49. Kapoor, Y., Thomas, J.C., Tan, G., John, V.T., Chauhan, A.: Surfactant-laden soft contact lenses for extended delivery of ophthalmic drugs. Invest. Ophthalmol. Vis. Sci. 30, 867–78 (2009)

    Google Scholar 

  50. King-Smith, P., Fink, B., Fogt, N., Nichols, K.K., Hill, R., Wilson, G.S.: The thickness of the human precorneal tear film: Evidence from reflection spectra. Invest. Ophthalmol. Vis. Sci. 41, 3348–3359 (2000)

    Google Scholar 

  51. King-Smith, P.E., Begley, C.G., Braun, R.J.: Mechanisms, imaging and structure of tear film breakup. Ocul. Surf. 16, 4–30 (2018)

    Article  Google Scholar 

  52. King-Smith, P.E., Fink, B.A., Hill, R.M., Koelling, K.W., Tiffany, J.M.: The thickness of the tear film. Curr. Eye. Res. 29, 357–368 (2004)

    Article  Google Scholar 

  53. King-Smith, P.E., Fink, B.A., Nichols, J.J., Nichols, K.K., Braun, R.J., McFadden, G.B.: The contribution of lipid layer movement to tear film thinning and breakup. Invest. Ophthalmol. Visual Sci. 50, 2747–2756 (2009)

    Article  Google Scholar 

  54. King-Smith, P.E., Hinel, E.A., Nichols, J.J.: Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Invest. Ophthalmol. Vis. Sci. 51, 2418–2423 (2010)

    Article  Google Scholar 

  55. King-Smith, P.E., Ramamoorthy, P., Braun, R.J., Nichols, J.J.: Tear film images and breakup analyzed using fluorescent quenching. Invest. Ophthalmol. Vis. Sci. 54, 6003—6011 (2013)

    Article  Google Scholar 

  56. King-Smith, P.E., Reuter, K.S., Braun, R.J., Nichols, J.J., Nichols, K.K.: Tear film breakup and structure studied by simultaneous video recording of fluorescence and tear film lipid layer, TFLL, images. Invest. Ophthalmol. Vis. Sci. 54, 4900–4909 (2013)

    Article  Google Scholar 

  57. Leiske, D.L., Leiske, C.I., Leiske, D.R., Toney, M.F., Senchyna, M., Ketelson, H.A., Meadows, D.L., Fuller, G.G.: Temperature-induced transitions in the structure and interfacial rheology of human meibum. Biophys. J. 102, 369–376 (2011)

    Article  Google Scholar 

  58. Leiske, D.L., Miller, C.E., Rosenfeld, L., Cerretani, C., Ayzner, A., Lin, B., Meron, M., Senchyna, M., Ketelson, H.A., Meadows, D., Srinivasan, S., Jones, L., Radke, C.J., Toney, M.F., Fuller, G.G.: Molecular structure of interfacial human meibum films. Langmuir 28, 11,858—11,865 (2012)

    Google Scholar 

  59. Leiske, D.L., Raju, S.R., Ketelson, H.A., Millar, T.J., Fuller, G.G.: The interfacial viscoelastic properties and structures of human and animal Meibomian lipids. Exp. Eye Res. 90, 598–604 (2010)

    Article  Google Scholar 

  60. Lemp, M.A.: The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop. Ocul. Surf. 5, 75–92 (2007)

    Article  Google Scholar 

  61. Lemp, M.A., Baudouin, C., Baum, J., Dogru, M., Foulks, G.N., Kinoshita, S., Laibson, P., McCulley, J., Murube, J., Pflugfelder, S.C., et al.: The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop (2007). Ocul. Surf. 5(2), 75–92 (2007)

    Article  Google Scholar 

  62. Lemp, M.A., Bron, A.J., Baudoin, C., Benitez Del Castillo, J.M., Geffen, D., Tauber, J., Foulks, G.N., Pepose, J.S., Sullivan, B.D.: Tear osmolarity in the diagnosis and management of dry eye disease. Am. J. Ophthalmol. 151, 792–798 (2011)

    Article  Google Scholar 

  63. Leung, B., Bonanno, J., Radke, C.: Oxygen-deficient metabolism and corneal edema. Prog. Ret. Eye Res. 30, 471–492 (2011)

    Article  Google Scholar 

  64. Levin, M.H., Kim, J.K., Hu, J., Verkman, A.S.: Potential difference measurements of ocular surface na+ absorption analyzed using an electrokinetic model. Invest. Ophthalmol. Vis. Sci. 47, 312–316 (2006)

    Google Scholar 

  65. Levin, M.H., Verkman, A.S.: Aquaporin-dependent water permeation at the mouse ocular surface: In vivo microfluorometric measurements in cornea and conjunctiva. Invest. Ophthalmol. Vis. Sci. 45, 4423–4432 (2004)

    Article  Google Scholar 

  66. Li, C.C., Chauhan, A.: Modeling ophthalmic drug delivery by soaked contact lenses. Ind. Eng. Chem. Res. 45, 3718–3734 (2006)

    Article  Google Scholar 

  67. Li, D.Q., Luo, L., Chen, Z., Kim, H.S., Song, X.J., Pflugfelder, S.C.: JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp. Eye Res. 82(4), 588–596 (2006)

    Article  Google Scholar 

  68. Li, L., Braun, R.J., Henshaw, W.D., King-Smith, P.E.: Computed tear film and osmolarity dynamics on an eye-shaped domain. Math. Med. Biol. 33, 123–157 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  69. Li, L., Braun, R.J., Henshaw, W.D., King-Smith, P.E.: Computed flow and fluorescence over the ocular surface. Math. Med. Biol. 35, 51–85 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  70. Li, L., Braun, R.J., Maki, K.L., Henshaw, W.D., King-Smith, P.E.: Tear film dynamics with evaporation, wetting and time-dependent flux boundary condition on an eye-shaped domain. Phys. Fluids 26, 052,101 (2014)

    Article  MATH  Google Scholar 

  71. Liu, H., Begley, C.G., Chalmers, R., Wilson, G., Srinivas, S.P., Wilkinson, J.A.: Temporal progression and spatial repeatability of tear breakup. Optom. Vis. Sci. 83, 723–730 (2006)

    Article  Google Scholar 

  72. Liu, H., Begley, C.G., Chen, M., Bradley, A., Bonanno, J., McNamara, N.A., Nelson, J.D., Simpson, T.: A link between tear instability and hyperosmolarity in dry eye. Invest. Ophthalmol. Vis. Sci. 50, 3671–3679 (2009)

    Article  Google Scholar 

  73. Maki, K.L., Braun, R.J., Driscoll, T.A., King-Smith, P.E.: An overset grid method for the study of reflex tearing. Math. Med. Biol. 25, 187–214 (2008)

    Article  MATH  Google Scholar 

  74. Maki, K.L., Braun, R.J., Henshaw, W.D., King-Smith, P.E.: Tear film dynamics on an eye-shaped domain I. pressure boundary conditions. Math. Med. Biol. 27, 227–254 (2010a)

    Google Scholar 

  75. Maki, K.L., Braun, R.J., Ucciferro, P., Henshaw, W.D., King-Smith, P.E.: Tear film dynamics on an eye-shaped domain. Part 2. Flux boundary conditions. J. Fluid Mech. 647, 361–390 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  76. Maki, K.L., Ross, D.S.: A new model for the suction pressure under a contact lens. J. Biol. Sys. 22, 235–248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. Matar, O.K., Craster, R.V., Warner, M.R.E.: Surfactant transport on highly viscous surface films. J. Fluid Mech. 466, 85–111 (2002)

    Article  MATH  Google Scholar 

  78. Maurice, D.M.: The dynamics and drainage of tears. Int. Ophthalmol. Clin. 13, 103–116 (1973)

    Article  Google Scholar 

  79. Miller, K.L., Polse, K.A., Radke, C.J.: Black line formation and the “perched” human tear film. Curr. Eye Res. 25, 155–62 (2002)

    Article  Google Scholar 

  80. Moosman, S., Homsy, G.: Evaporating menisci of wetting fluids. J. Colloid Interface Sci. 73, 212–223 (1980)

    Article  Google Scholar 

  81. Morris, S.J.S.: Contact angles for evaporating liquids predicted and compared with existing experiments. J. Fluid Mech. 432, 1–30 (2001)

    Article  MATH  Google Scholar 

  82. Mota, M.C., Carvalho, P., Ramalho, J., Leite, E.: Spectrophotometric analysis of sodium fluorescein aqueous solutions. determination of molar absorption coefficient. Int. Ophthalmol. 15, 321–326 (1991)

    Google Scholar 

  83. Nagyová, B., Tiffany, J.M.: Components of tears responsible for surface tension. Curr. Eye Res. 19, 4–11 (1999)

    Article  Google Scholar 

  84. Naire, S., Braun, R.J., Snow, S.A.: Limiting cases of gravitational drainage of a vertical free film for evaluating surfactants. SIAM J. Appl. Math. 61, 889–913 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  85. Nichols, J.J., King-Smith, P.E., Hinel, E.A., Thangavelu, M., Nichols, K.K.: The use of fluorescent quenching in studying the contribution of evaporation to tear thinning. Invest. Ophthalmol. Visual Sci. 53, 5426–5432 (2012)

    Article  Google Scholar 

  86. Nichols, J.J., Mitchell, G.L., King-Smith, P.E.: Thinning rate of the precorneal and prelens tear films. Invest. Ophthalmol. Vis. Sci. 46, 2353–2361 (2005)

    Article  Google Scholar 

  87. Nong, K., Anderson, D.M.: Thin tilm evolution over a thin porous layer: Modeling a tear film over a contact lens. SIAM J. Appl. Math. 70, 2771–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  88. Owens, H., Phillips, J.: Spreading of the tears after a blink: Velocity and stabilization time in healthy eyes. Cornea 20, 484–487 (2001)

    Article  Google Scholar 

  89. Pandit, J.C., Nagyová, B., Bron, A.J., Tiffany, J.M.: Physical properties of stimulated and unstimulated tears. Exp. Eye Res. 68, 247–53 (1999)

    Article  Google Scholar 

  90. Peng, C.C., Cerretani, C., Braun, R.J., Radke, C.J.: Evaporation-driven instability of the precorneal tear film. Adv. Coll. Interface Sci. 206, 250–264 (2014)

    Article  Google Scholar 

  91. Potash, M., Wayner, P.: Evaporation from a two-dimensional extended meniscus. Intl J. Heat Mass Transfer 15, 1851–1863 (1972)

    Article  Google Scholar 

  92. Purslow, C., Wolffsohn, J.S.: Ocular surface temperature: A review. Eye Contact Lens 31, 117–123 (2005)

    Article  Google Scholar 

  93. Riquelme, R., Lira, I., Pérez-López, C., Rayas, J.A., Rodríguez-Vera, R.: Interferometric measurement of a diffusion coefficient: comparison of two methods and uncertainty analysis. J. Phys. D. Appl. Phys. 40, 2769–2776 (2007)

    Article  Google Scholar 

  94. Rosenfeld, L., Cerretani, C., Leiske, D.L., Toney, M.F., Radke, C.J., Fuller, G.G.: Structural and rheological properties of meibomian lipid. Invest. Ophthalmol. Vis. Sci. 54, 2720–2732 (2013)

    Article  Google Scholar 

  95. Rosenfeld, L., Fuller, G.G.: Consequences of interfacial viscoelasticity on thin film stability. Langmuir 28(40), 14,238–14,244 (2012)

    Article  Google Scholar 

  96. Ross, D.S., Maki, K.L., Holz, E.K.: Existence theory for the radially symmetric contact lens equation. SIAM J. Appl. Math. 76, 827–844 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  97. Sakata, E., Berg, J.: Surface diffusion in monolayers. Ind. Eng. Chem. Fundam. 8(3), 570–573 (1969)

    Article  Google Scholar 

  98. Sharma, A.: Surface properties of normal and damaged corneal epithelia. J. Dispersion Sci. Technol. 13, 459–478 (1992)

    Article  Google Scholar 

  99. Sharma, A.: Acid-base interactions in the cornea-tear film system: surface chemistry of corneal wetting, cleaning, lubrication, hydration and defense. J. Dispersion Sci. Technol. 19(6-7), 1031–1068 (1998)

    Article  Google Scholar 

  100. Sharma, A.: Surface-chemical pathways of the tear film breakup. In: D.A. Sullivan, D.A. Dartt, M.A. Meneray (eds.) Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2, Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2, vol. 438, pp. 361–370. Springer, Berlin (1998)

    Chapter  Google Scholar 

  101. Sharma, A., Ruckenstein, E.: Mechanism of tear film rupture and formation of dry spots on cornea. J. Colloid Interface Sci. 106, 12–27 (1985)

    Article  Google Scholar 

  102. Sharma, A., Ruckenstein, E.: An analytical nonlinear theory of thin film rupture and its application to wetting films. J. Coll. Interface Sci. 113, 8–34 (1986)

    Article  Google Scholar 

  103. Sharma, A., Ruckenstein, E.: The role of lipid abnormalities, aqueous and mucus deficiencies in the tear film breakup, and implications for tear substitutes and contact lens tolerance. J. Colloid Interface Sci. 111, 456–479 (1986)

    Article  Google Scholar 

  104. Sharma, A., Tiwari, S., Khanna, R., Tiffany, J.: Hydrodynamics of meniscus-induced thinning of the tear film. In: D.A. Sullivan, D.A. Dartt, M.A. Meneray (eds.) Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2, pp. 425–31. New York: Plenum Press (1998)

    Chapter  Google Scholar 

  105. Siddique, J.I., Braun, R.J.: Tear film dynamics with evaporation, osmolarity and surfactant transport. Appl. Math. Model. 39, 255–269 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  106. Stapf, M.R., Braun, R.J., King-Smith, P.E.: Duplex tear film evaporation analysis. Bull. Math. Biol. 79(12), 2814–2846 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  107. Stebe, K.J., Maldarelli, C.: Remobilizing surfactant retarded fluid particle interfaces: Ii. controlling the surface mobility at interface of solutions containing surface active com- ponents. J. Colloid Interface Sci. 163, 177–189 (1994)

    Google Scholar 

  108. Stone, H.A.: A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2, 111–112 (1990)

    Article  Google Scholar 

  109. Tiffany, J.M.: The viscosity of human tears. Int. Ophthalmol. 15, 371–376 (1991)

    Article  Google Scholar 

  110. Usha, R., Anjalaiah, Sanyasiraju, Y.V.S.S.: Dynamics of a pre-lens tear film after a blink: Model, evolution, and rupture. Phys. Fluids 25, 112,111 (2013)

    Article  MATH  Google Scholar 

  111. Webber, W.R.S., Jones, D.P.: Continuous fluorophotometric method measuring tear turnover rate in humans and analysis of factors affecting accuracy. Med. Biol. Eng. Comput. 24, 386–392 (1986)

    Article  Google Scholar 

  112. Winter, K.N., Anderson, D.M., Braun, R.J.: A model for wetting and evaporation of a post-blink precorneal tear film. Math. Med. Biol. 27, 211–225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  113. Wong, H., Fatt, I., Radke, C.: Deposition and thinning of the human tear film. J. Colloid Interface Sci. 184(1), 44–51 (1996)

    Article  Google Scholar 

  114. Yanez-Soto, B., Mannis, M.J., Schwab, I., Li, J.Y., Leonard, B.C., Abbott, N.L., Murphy, C.J.: Interfacial phenomena and the ocular surface. Ocul. Surf. 12, 178–201 (2014)

    Article  Google Scholar 

  115. Yokoi, N., Georgiev, G.A.: Tear dynamics and dry eye disease. Ocul. Surf. Dis. London:JP Medical Ltd p. 47 (2013)

    Google Scholar 

  116. Yokoi, N., Georgiev, G.A.: Tear-film-oriented diagnosis and therapy for dry eye. Dry eye syndrome: basic and clinical perspectives. London: Future Medicine Ltd pp. 96–108 (2013)

    Google Scholar 

  117. Yokoi, N., Georgiev, G.A., Kato, H., Komuro, A., Sonomura, Y., Sotozono, C., Tsubota, K., Kinoshita, S.: Classification of fluorescein breakup patterns: A novel method of differential diagnosis for dry eye. Am. J. Ophthalmol. 180, 72–85 (2017)

    Article  Google Scholar 

  118. Yokoi, N., Takehisa, Y., Kinoshita, S.: Correlation of tear lipid layer interference patterns with the diagnosis and severity of dry eye. Am. J. Ophthalmol. 122, 818–824 (1996)

    Article  Google Scholar 

  119. Zhang, L., Matar, O.K., Craster, R.V.: Analysis of tear film rupture: Effect of non-Newtonian rheology. J. Coll. Interface Sci. 262, 130–48 (2003)

    Article  Google Scholar 

  120. Zhang, L., Matar, O.K., Craster, R.V.: Rupture analysis of the corneal mucus layer of the tear film. Molec. Sim. 30, 167–72 (2004)

    Article  MATH  Google Scholar 

  121. Zhong, L., Braun, R.J., Begley, C.G., King-Smith, P.E.: Dynamics of fluorescent imaging for rapid tear thinning. Bull. Math. Biol. 81, 39–80 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  122. Zhong, L., Braun, R.J., King-Smith, P.E., Begley, C.G.: Mathematical modeling of glob-driven tear film breakup. J. Modeling Ophthalmol. 2(1), 24–28 (2018)

    MATH  Google Scholar 

  123. Zhong, L., Ketelaar, C.F., Braun, R.J., Begley, C.G., King-Smith, P.E.: Mathematical modeling of glob-driven tear film breakup. Math. Med. Biol. 36, 55–91 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  124. Zubkov, V.S., Breward, C.J., Gaffney, E.A.: Coupling fluid and solute dynamics within the ocular surface tear film: a modelling study of black line osmolarity. Bull. Math. Biol. 74, 2062–2093 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  125. Zubkov, V.S., Breward, C.J.W., Gaffney, E.A.: Meniscal tear film fluid dynamics near marx’s line. Bull. Math. Biol. 75(9), 1524–1543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is funded by NSF grant 1412085 (Braun, Driscoll) and NIH grant 1R01EY021794 (Begley). The opinions expressed here are those of the authors and do not represent the official position of either the NSF or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braun, R.J., Driscoll, T., Begley, C. (2019). Mathematical Models of the Tear Film. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_17

Download citation

Publish with us

Policies and ethics