Skip to main content

Imaging Techniques for the Visualization and Evaluation of Tear Film Dynamics

  • Chapter
  • First Online:
Book cover Ocular Fluid Dynamics

Abstract

Significant efforts have been made with the development of various imaging techniques to visualize and understand the tear film dynamics. This chapter reviews three imaging techniques with established impact on imaging the tear film dynamics: fluorescent imaging, interferometry, and optical coherence tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rieger, G., 1992. The importance of the precorneal tear film for the quality of optical imaging. British journal of ophthalmology, 76(3), pp.157-158.

    Article  Google Scholar 

  2. Tomlinson, A. and Khanal, S., 2005. Assessment of tear film dynamics: quantification approach. The ocular surface, 3(2), pp.81-95.

    Article  Google Scholar 

  3. Lemp, M.A., Baudouin, C., Baum, J., Dogru, M., Foulks, G.N., Kinoshita, S., Laibson, P., McCulley, J., Murube, J., Pflugfelder, S.C. and Rolando, M., 2007. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocular Surface, 5(2), pp.75-92.

    Google Scholar 

  4. Norn, M.S., 1969. Desiccation of the precorneal film. Acta ophthalmologica, 47(4), pp.865-880.

    Article  Google Scholar 

  5. Korb, D.R., 2000. Survey of preferred tests for diagnosis of the tear film and dry eye. Cornea, 19(4), pp.483-486.

    Article  Google Scholar 

  6. Cho, P. and Douthwaite, W., 1995. The relation between invasive and noninvasive tear break-up time. Optometry & vision science, 72(1), pp.17-22.

    Google Scholar 

  7. Bron, A.J., Abelson, M.B., Ousler, G., Pearce, E., Tomlinson, A., Yokoi, N., Smith, J.A., Begley, C., Caffery, B., Nichols, K. and Schaumberg, D., 2007. Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop (2007). Ocular surface, 5(2), pp.108-152.

    Google Scholar 

  8. Norn, M.S., 1969. Dead, degenerate, and living cells in conjunctival fluid and mucous thread. Acta ophthalmologica, 47(5-6), pp.1102-1115.

    Article  Google Scholar 

  9. Pflugfelder, S.C., Tseng, S.C., Sanabria, O., Kell, H., Garcia, C.G., Felix, C., Feuer, W. and Reis, B.L., 1998. Evaluation of subjective assessments and objective diagnostic tests for diagnosing tear-film disorders known to cause ocular irritation. Cornea, 17(1), p.38.

    Article  Google Scholar 

  10. Begley, C.G., Liu, H., Chalmers, R.L., Renner, D. and Wilkinson, J., 2005. The forced staring tear breakup dynamics model: a quantitative method to measure tear film stability in dry eye. The ocular surface, 3, p.S47.

    Google Scholar 

  11. Liu, H., Begley, C.G., Chalmers, R., Wilson, G., Srinivas, S.P. and Wilkinson, J.A., 2006. Temporal progression and spatial repeatability of tear breakup. Optometry & vision science, 83(10), pp.723-730.

    Google Scholar 

  12. Begley, C., Simpson, T., Liu, H., Salvo, E.,Wu, Z., Bradley, A. and Situ, P., 2013. Quantitative analysis of tear film fluorescence and discomfort during tear film instability and thinning. Investigative ophthalmology & visual science, 54(4), pp.2645-2653.

    Google Scholar 

  13. Webber, W.R.S. and Jones, D.P., 1986. Continuous fluorophotometric method of measuring tear turnover rate in humans and analysis of factors affecting accuracy. Medical and biological engineering and computing, 24(4), p.386.

    Article  Google Scholar 

  14. Joshi, A., Maurice, D. and Paugh, J.R., 1996. A new method for determining corneal epithelial barrier to fluorescein in humans. Investigative ophthalmology & visual science, 37(6), pp.1008-1016.

    Google Scholar 

  15. King-Smith, P.E., Ramamoorthy, P., Braun, R.J. and Nichols, J.J., 2013. Tear film images and breakup analyzed using fluorescent quenching. Investigative ophthalmology & visual science, 54(9), p.6003.

    Google Scholar 

  16. King-Smith, P.E., Reuter, K.S., Braun, R.J., Nichols, J.J. and Nichols, K.K., 2013. Tear film breakup and structure studied by simultaneous video recording of fluorescence and tear film lipid layer images. Investigative ophthalmology & visual science, 54(7), pp.4900-4909.

    Google Scholar 

  17. Su, T.Y., Chang, S.W., Yang, C.J. and Chiang, H.K., 2014. Direct observation and validation of fluorescein tear film break-up patterns by using a dual thermal-fluorescent imaging system. Biomedical optics express, 5(8), pp.2614-2619.

    Article  Google Scholar 

  18. Doane, M.G., 1989. An instrument for in vivo tear film interferometry. Optometry and Vision Science, 66(6), pp.383-388.

    Article  Google Scholar 

  19. Fogt, N., King-Smith, P.E. and Tuell, G., 1998. Interferometric measurement of tear film thickness by use of spectral oscillations. JOSA A, 15(1), pp.268-275.

    Article  Google Scholar 

  20. King-Smith, P.E., Fink, B.A. and Fogt, N., 1999. Three interferometric methods for measuring the thickness of layers of the tear film. Optometry & vision science, 76(1), pp.19-32.

    Google Scholar 

  21. Goto, E., Dogru, M., Kojima, T. and Tsubota, K., 2003. Computer-synthesis of an interference color chart of human tear lipid layer, by a colorimetric approach. Investigative ophthalmology & visual science, 44(11), pp.4693-4697.

    Google Scholar 

  22. King-Smith, P.E., Fink, B.A., Fogt, N., Nichols, K.K., Hill, R.M. and Wilson, G.S., 2000. The thickness of the human precorneal tear film: evidence from reflection spectra. Investigative ophthalmology & visual science, 41(11), pp.3348-3359.

    Google Scholar 

  23. Prydal, J.I. and Campbell, F.W., 1992. Study of precorneal tear film thickness and structure by interferometry and confocal microscopy. Investigative ophthalmology & visual science, 33(6), pp.1996-2005.

    Google Scholar 

  24. Wojtkowski, M., Leitgeb, R., Kowalczyk, A., Bajraszewski, T. and Fercher, A.F., 2002. In vivo human retinal imaging by Fourier domain optical coherence tomography. Journal of biomedical optics, 7(3), pp.457-463.

    Article  Google Scholar 

  25. Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A. and Fujimoto, J.G., 1991. Optical coherence tomography. Science (New York, NY), 254(5035), p.1178.

    Article  Google Scholar 

  26. Fercher, A.F., Hitzenberger, C.K., Kamp, G. and El-Zaiat, S.Y., 1995. Measurement of intraocular distances by backscattering spectral interferometry. Optics communications, 117(1-2), pp.43-48.

    Article  Google Scholar 

  27. De Boer, J.F., Cense, B., Park, B.H., Pierce, M.C., Tearney, G.J. and Bouma, B.E., 2003. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics letters, 28(21), pp.2067-2069.

    Article  Google Scholar 

  28. Bouma, B.E., Yun, S.H., Vakoc, B.J., Suter, M.J. and Tearney, G.J., 2009. Fourier-domain optical coherence tomography: recent advances toward clinical utility. Current opinion in biotechnology, 20(1), pp.111-118.

    Article  Google Scholar 

  29. Wang, J., Fonn, D., Simpson, T.L. and Jones, L., 2003. Precorneal and pre-and postlens tear film thickness measured indirectly with optical coherence tomography. Investigative ophthalmology & visual science, 44(6), pp.2524-2528.

    Google Scholar 

  30. Werkmeister, R.M., Alex, A., Kaya, S., Unterhuber, A., Hofer, B., Riedl, J., Bronhagl, M., Vietauer, M., Schmidl, D., Schmoll, T. and Garhöfer, G., 2013. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Investigative ophthalmology & visual science, 54(8), pp.5578-5583.

    Google Scholar 

  31. Yadav, R., Lee, K.S., Rolland, J.P., Zavislan, J.M., Aquavella, J.V. and Yoon, G., 2011. Micrometer axial resolution OCT for corneal imaging. Biomedical optics express, 2(11), pp.3037-3046.

    Article  Google Scholar 

  32. Huang, J., Clarkson, E., Kupinski, M., Lee, K.S., Maki, K.L., Ross, D.S., Aquavella, J.V. and Rolland, J.P., 2013. Maximum-likelihood estimation in optical coherence tomography in the context of the tear film dynamics. Biomedical optics express, 4(10), pp.1806-1816.

    Article  Google Scholar 

  33. Huang, J., Lee, K.S., Clarkson, E., Kupinski, M., Maki, K.L., Ross, D.S., Aquavella, J.V. and Rolland, J.P., 2013. Phantom study of tear film dynamics with optical coherence tomography and maximum-likelihood estimation. Optics letters, 38(10), pp.1721-1723.

    Article  Google Scholar 

  34. Huang, J., Yuan, Q., Zhang, B., Xu, K., Tankam, P., Clarkson, E., Kupinski, M.A., Hindman, H.B., Aquavella, J.V., Suleski, T.J. and Rolland, J.P., 2014. Measurement of a multi-layered tear film phantom using optical coherence tomography and statistical decision theory. Biomedical optics express, 5(12), pp.4374-4386.

    Article  Google Scholar 

  35. Huang, J., Yao, J., Cirucci, N., Ivanov, T. and Rolland, J.P., 2015. Performance analysis of optical coherence tomography in the context of a thickness estimation task. Journal of biomedical optics, 20(12), p.121306.

    Google Scholar 

  36. Huang, J., Hindman, H.B. and Rolland, J.P., 2016. In vivo thickness dynamics measurement of tear film lipid and aqueous layers with optical coherence tomography and maximum-likelihood estimation. Optics letters, 41(9), pp.1981-1984.

    Article  Google Scholar 

  37. King-Smith, P.E., Fink, B.A., Nichols, J.J., Nichols, K.K., Braun, R.J. and McFadden, G.B., 2009. The contribution of lipid layer movement to tear film thinning and breakup. Investigative ophthalmology & visual science, 50(6), pp.2747-2756.

    Google Scholar 

  38. King-Smith, P.E., Hinel, E.A. and Nichols, J.J., 2010. Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Investigative ophthalmology & visual science, 51(5), pp.2418-2423.

    Google Scholar 

  39. dos Santos, V.A., Schmetterer, L., Gröschl, M., Garhofer, G., Schmidl, D., Kucera, M., Unterhuber, A., Hermand, J.P. and Werkmeister, R.M., 2015. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography. Optics express, 23(16), pp.21043-21063.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, J., Rolland, J.P. (2019). Imaging Techniques for the Visualization and Evaluation of Tear Film Dynamics. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_16

Download citation

Publish with us

Policies and ethics