Skip to main content

The Tear Film: Pathological Conditions

  • Chapter
  • First Online:
Ocular Fluid Dynamics

Abstract

This chapter first reviews the pathogenesis of dry eye (DE) and the pathological effects DE has on the properties and composition of the tear film, lacrimal and meibomian glands, and goblet cells. Next, the pathologic changes that occur with two DE related risk factors: aging and the use of glaucoma eye drops are discussed. Finally, the clinical consequences of tear film, lacrimal gland, meibomian gland, and goblet cell alterations, focusing on visual function, nerve modulation, quality of life, and economic burden, are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). The ocular surface. 2007;5(2):75-92.

    Google Scholar 

  2. Stern ME, Gao J, Siemasko KF, Beuerman RW, Pflugfelder SC. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res. 2004;78(3):409-416.

    Article  Google Scholar 

  3. Stapleton F, Alves M, Bunya VY, et al. TFOS DEWS II Epidemiology Report. The ocular surface. 2017;15(3):334-365.

    Article  Google Scholar 

  4. Boehm N, Riechardt AI, Wiegand M, Pfeiffer N, Grus FH. Proinflammatory cytokine profiling of tears from dry eye patients by means of antibody microarrays. Investigative ophthalmology & visual science. 2011;52(10):7725-7730.

    Article  Google Scholar 

  5. Corrales RM, Villarreal A, Farley W, Stern ME, Li DQ, Pflugfelder SC. Strain-related cytokine profiles on the murine ocular surface in response to desiccating stress. Cornea. 2007;26(5):579-584.

    Article  Google Scholar 

  6. Lam H, Bleiden L, de Paiva CS, Farley W, Stern ME, Pflugfelder SC. Tear cytokine profiles in dysfunctional tear syndrome. Am J Ophthalmol. 2009;147(2):198-205 e191.

    Article  Google Scholar 

  7. Corrales RM, Stern ME, De Paiva CS, Welch J, Li DQ, Pflugfelder SC. Desiccating stress stimulates expression of matrix metalloproteinases by the corneal epithelium. Investigative ophthalmology & visual science. 2006;47(8):3293-3302.

    Article  Google Scholar 

  8. Wei Y, Asbell PA. The core mechanism of dry eye disease is inflammation. Eye Contact Lens. 2014;40(4):248-256.

    Article  Google Scholar 

  9. Wei Y, Pinhas A, Liu Y, Epstein S, Wang J, Asbell P. Isoforms of secretory group two phospholipase A (sPLA2) in mouse ocular surface epithelia and lacrimal glands. Investigative ophthalmology & visual science. 2012;53(6):2845-2855.

    Article  Google Scholar 

  10. Higuchi A, Kawakita T, Tsubota K. IL-6 induction in desiccated corneal epithelium in vitro and in vivo. Molecular vision. 2011;17:2400-2406.

    Google Scholar 

  11. Bandamwar KL, Papas EB, Garrett Q. Fluorescein staining and physiological state of corneal epithelial cells. Contact lens & anterior eye: the journal of the British Contact Lens Association. 2014;37(3):213-223.

    Article  Google Scholar 

  12. Burstein NL. The effects of topical drugs and preservatives on the tears and corneal epithelium in dry eye. Trans Ophthalmol Soc U K. 1985;104 (Pt 4):402-409.

    Google Scholar 

  13. Butovich IA, Lu H, McMahon A, Eule JC. Toward an animal model of the human tear film: biochemical comparison of the mouse, canine, rabbit, and human meibomian lipidomes. Investigative ophthalmology & visual science. 2012;53(11):6881-6896.

    Article  Google Scholar 

  14. Jester JV, Nicolaides N, Kiss-Palvolgyi I, Smith RE. Meibomian gland dysfunction. II. The role of keratinization in a rabbit model of MGD. Investigative ophthalmology & visual science. 1989;30(5):936-945.

    Google Scholar 

  15. Jester JV, Potma E, Brown DJ. PPARgamma Regulates Mouse Meibocyte Differentiation and Lipid Synthesis. The ocular surface. 2016;14(4):484-494.

    Article  Google Scholar 

  16. Jester JV, Rajagopalan S, Rodrigues M. Meibomian gland changes in the rhino (hrrhhrrh) mouse. Investigative ophthalmology & visual science. 1988;29(7):1190-1194.

    Google Scholar 

  17. McMahon A, Lu H, Butovich IA. A Role for ELOVL4 in the Mouse Meibomian Gland and Sebocyte Cell Biology. Investigative ophthalmology & visual science. 2014;55(5):2832-2840.

    Article  Google Scholar 

  18. Parfitt GJ, Brown DJ, Jester JV. Transcriptome analysis of aging mouse meibomian glands. Molecular vision. 2016;22:518-527.

    Google Scholar 

  19. Redfern RL, Patel N, Hanlon S, et al. Toll-like receptor expression and activation in mice with experimental dry eye. Investigative ophthalmology & visual science. 2013;54(2):1554-1563.

    Article  Google Scholar 

  20. Rios JD, Horikawa Y, Chen LL, et al. Age-dependent alterations in mouse exorbital lacrimal gland structure, innervation and secretory response. Experimental eye research. 2005;80(4):477-491.

    Article  Google Scholar 

  21. Zheng X, Bian F, Ma P, et al. Induction of Th17 differentiation by corneal epithelial-derived cytokines. J Cell Physiol. 2010;222(1):95-102.

    Article  Google Scholar 

  22. Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease. International reviews of immunology. 2013;32(1):19-41.

    Article  Google Scholar 

  23. Stern ME, Gao J, Schwalb TA, et al. Conjunctival T-cell subpopulations in Sjogren’s and non-Sjogren’s patients with dry eye. Investigative ophthalmology & visual science. 2002;43(8):2609-2614.

    Google Scholar 

  24. De Saint Jean M, Brignole F, Feldmann G, Goguel A, Baudouin C. Interferon-gamma induces apoptosis and expression of inflammation-related proteins in Chang conjunctival cells. Investigative ophthalmology & visual science. 1999;40(10):2199-2212.

    Google Scholar 

  25. Tiffany JM. Tears in health and disease. Eye (London, England). 2003;17(8):923-926.

    Article  Google Scholar 

  26. Tiffany JM. The normal tear film. Developments in ophthalmology. 2008;41:1-20.

    Google Scholar 

  27. Farris RL. Tear osmolarity--a new gold standard? Advances in experimental medicine and biology. 1994;350:495-503.

    Google Scholar 

  28. Gilbard JP, Farris RL, Santamaria J, 2nd. Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Archives of ophthalmology (Chicago, Ill: 1960). 1978;96(4):677-681.

    Article  Google Scholar 

  29. Norn MS. Dead, degenerate, and living cells in conjunctival fluid and mucous thread. Acta Ophthalmol (Copenh). 1969;47(5):1102-1115.

    Article  Google Scholar 

  30. Mengher LS, Bron AJ, Tonge SR, Gilbert DJ. Effect of fluorescein instillation on the pre-corneal tear film stability. Current eye research. 1985;4(1):9-12.

    Article  Google Scholar 

  31. Pflugfelder SC, Tseng SC, Sanabria O, et al. Evaluation of subjective assessments and objective diagnostic tests for diagnosing tear-film disorders known to cause ocular irritation. Cornea. 1998;17(1):38-56.

    Article  Google Scholar 

  32. Ohashi Y, Dogru M, Tsubota K. Laboratory findings in tear fluid analysis. Clin Chim Acta. 2006;369(1):17-28.

    Article  Google Scholar 

  33. Walter SD, Gronert K, McClellan AL, Levitt RC, Sarantopoulos KD, Galor A. omega-3 Tear Film Lipids Correlate With Clinical Measures of Dry Eye. Investigative ophthalmology & visual science. 2016;57(6):2472-2478.

    Google Scholar 

  34. Cortina MS, He J, Li N, Bazan NG, Bazan HE. Neuroprotectin D1 synthesis and corneal nerve regeneration after experimental surgery and treatment with PEDF plus DHA. Investigative ophthalmology & visual science. 2010;51(2):804-810.

    Article  Google Scholar 

  35. Cortina MS, He J, Russ T, Bazan NG, Bazan HE. Neuroprotectin D1 restores corneal nerve integrity and function after damage from experimental surgery. Investigative ophthalmology & visual science. 2013;54(6):4109-4116.

    Article  Google Scholar 

  36. Dartt DA, Hodges RR, Li D, Shatos MA, Lashkari K, Serhan CN. Conjunctival goblet cell secretion stimulated by leukotrienes is reduced by resolvins D1 and E1 to promote resolution of inflammation. J Immunol. 2011;186(7):4455-4466.

    Article  Google Scholar 

  37. Esquenazi S, Bazan HE, Bui V, He J, Kim DB, Bazan NG. Topical combination of NGF and DHA increases rabbit corneal nerve regeneration after photorefractive keratectomy. Investigative ophthalmology & visual science. 2005;46(9):3121-3127.

    Article  Google Scholar 

  38. Harauma A, Saito J, Watanabe Y, Moriguchi T. Potential for daily supplementation of n-3 fatty acids to reverse symptoms of dry eye in mice. Prostaglandins Leukot Essent Fatty Acids. 2014;90(6):207-213.

    Article  Google Scholar 

  39. Kangari H, Eftekhari MH, Sardari S, et al. Short-term consumption of oral omega-3 and dry eye syndrome. Ophthalmology. 2013;120(11):2191-2196.

    Article  Google Scholar 

  40. Kawakita T, Kawabata F, Tsuji T, Kawashima M, Shimmura S, Tsubota K. Effects of dietary supplementation with fish oil on dry eye syndrome subjects: randomized controlled trial. Biomed Res. 2013;34(5):215-220.

    Article  Google Scholar 

  41. Zoukhri D. Effect of inflammation on lacrimal gland function. Experimental eye research. 2006;82(5):885-898.

    Article  Google Scholar 

  42. Manganelli P, Fietta P. Apoptosis and Sjogren syndrome. Semin Arthritis Rheum. 2003;33(1):49-65.

    Article  Google Scholar 

  43. Mariette X. [Pathophysiology of Sjogren’s syndrome]. Ann Med Interne (Paris). 2003;154(3):157-168.

    Google Scholar 

  44. Tapinos NI, Polihronis M, Tzioufas AG, Skopouli FN. Immunopathology of Sjogren’s syndrome. Ann Med Interne (Paris). 1998;149(1):17-24.

    Google Scholar 

  45. Sullivan DA. Tearful relationships? Sex, hormones, the lacrimal gland, and aqueous-deficient dry eye. The ocular surface. 2004;2(2):92-123.

    Article  MathSciNet  Google Scholar 

  46. Sullivan DA, Belanger A, Cermak JM, et al. Are women with Sjogren’s syndrome androgen-deficient? The Journal of rheumatology. 2003;30(11):2413-2419.

    Google Scholar 

  47. Sullivan DA, Krenzer KL, Sullivan BD, Tolls DB, Toda I, Dana MR. Does androgen insufficiency cause lacrimal gland inflammation and aqueous tear deficiency? Investigative ophthalmology & visual science. 1999;40(6):1261-1265.

    Google Scholar 

  48. Xiao B, Wang Y, Reinach PS, et al. Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye. PloS one. 2015;10(1):e0115333.

    Article  Google Scholar 

  49. McCulley JP, Shine WE. Meibomian gland function and the tear lipid layer. The ocular surface. 2003;1(3):97-106.

    Article  Google Scholar 

  50. Nicolaides N, Santos EC, Smith RE, Jester JV. Meibomian gland dysfunction. III. Meibomian gland lipids. Investigative ophthalmology & visual science. 1989;30(5):946-951.

    Google Scholar 

  51. Lam SM, Tong L, Yong SS, et al. Meibum lipid composition in Asians with dry eye disease. PloS one. 2011;6(10):e24339.

    Article  Google Scholar 

  52. Joffre C, Souchier M, Gregoire S, et al. Differences in meibomian fatty acid composition in patients with meibomian gland dysfunction and aqueous-deficient dry eye. The British journal of ophthalmology. 2008;92(1):116-119.

    Article  Google Scholar 

  53. Foulks GN. The correlation between the tear film lipid layer and dry eye disease. Surv Ophthalmol. 2007;52(4):369-374.

    Article  Google Scholar 

  54. Baudouin C, Messmer EM, Aragona P, et al. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. The British journal of ophthalmology. 2016;100(3):300-306.

    Article  Google Scholar 

  55. Hwang HS, Parfitt GJ, Brown DJ, Jester JV. Meibocyte differentiation and renewal: Insights into novel mechanisms of meibomian gland dysfunction (MGD). Experimental eye research. 2017.

    Article  Google Scholar 

  56. Jester JV, Parfitt GJ, Brown DJ. Meibomian gland dysfunction: hyperkeratinization or atrophy? BMC ophthalmology. 2015;15 Suppl 1:156.

    Google Scholar 

  57. Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4(4):611-617.

    Google Scholar 

  58. Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. The Journal of biological chemistry. 2001;276(41):37731-37734.

    Article  Google Scholar 

  59. Petroll WM, Jester JV, Bean JJ, Cavanagh HD. Myofibroblast transformation of cat corneal endothelium by transforming growth factor-beta1, -beta2, and -beta3. Investigative ophthalmology & visual science. 1998;39(11):2018-2032.

    Google Scholar 

  60. Argueso P, Gipson IK. Epithelial mucins of the ocular surface: structure, biosynthesis and function. Experimental eye research. 2001;73(3):281-289.

    Article  Google Scholar 

  61. Gipson IK. Distribution of mucins at the ocular surface. Experimental eye research. 2004;78(3):379-388.

    Article  Google Scholar 

  62. Mantelli F, Argueso P. Functions of ocular surface mucins in health and disease. Curr Opin Allergy Clin Immunol. 2008;8(5):477-483.

    Article  Google Scholar 

  63. Stephens DN, McNamara NA. Altered Mucin and Glycoprotein Expression in Dry Eye Disease. Optom Vis Sci. 2015;92(9):931-938.

    Article  Google Scholar 

  64. Sweeney DF, Millar TJ, Raju SR. Tear film stability: a review. Experimental eye research. 2013;117:28-38.

    Article  Google Scholar 

  65. Shimazaki-Den S, Dogru M, Higa K, Shimazaki J. Symptoms, visual function, and mucin expression of eyes with tear film instability. Cornea. 2013;32(9):1211-1218.

    Article  Google Scholar 

  66. Tiffany JM, Winter N, Bliss G. Tear film stability and tear surface tension. Current eye research. 1989;8(5):507-515.

    Article  Google Scholar 

  67. Van Haeringen NJ. Aging and the lacrimal system. The British journal of ophthalmology. 1997;81(10):824-826.

    Article  Google Scholar 

  68. Xu KP, Tsubota K. Correlation of tear clearance rate and fluorophotometric assessment of tear turnover. The British journal of ophthalmology. 1995;79(11):1042-1045.

    Article  Google Scholar 

  69. Nava A, Barton K, Monroy DC, Pflugfelder SC. The effects of age, gender, and fluid dynamics on the concentration of tear film epidermal growth factor. Cornea. 1997;16(4):430-438.

    Article  Google Scholar 

  70. van Best JA, Benitez del Castillo JM, Coulangeon LM. Measurement of basal tear turnover using a standardized protocol. European concerted action on ocular fluorometry. Graefes Arch Clin Exp Ophthalmol. 1995;233(1):1-7.

    Google Scholar 

  71. Furukawa RE, Polse KA. Changes in tear flow accompanying aging. Am J Optom Physiol Opt. 1978;55(2):69-74.

    Article  Google Scholar 

  72. Hirase K, Shimizu A, Yokoi N, Nishida K, Kinoshita S. [Age-related alteration of tear dynamics in normal volunteers]. Nippon Ganka Gakkai zasshi. 1994;98(6):575-578.

    Google Scholar 

  73. Hagele JE, Guzek JP, Shavlik GW. Lacrimal testing. Age as a factor in Jones testing. Ophthalmology. 1994;101(3):612-617.

    Article  Google Scholar 

  74. McGill JI, Liakos GM, Goulding N, Seal DV. Normal tear protein profiles and age-related changes. The British journal of ophthalmology. 1984;68(5):316-320.

    Article  Google Scholar 

  75. Mathers WD, Lane JA, Zimmerman MB. Tear film changes associated with normal aging. Cornea. 1996;15(3):229-234.

    Article  Google Scholar 

  76. Obata H, Yamamoto S, Horiuchi H, Machinami R. Histopathologic study of human lacrimal gland. Statistical analysis with special reference to aging. Ophthalmology. 1995;102(4):678-686.

    Article  Google Scholar 

  77. Ueno H, Ariji E, Izumi M, Uetani M, Hayashi K, Nakamura T. MR imaging of the lacrimal gland. Age-related and gender-dependent changes in size and structure. Acta Radiol. 1996;37(5):714-719.

    Article  Google Scholar 

  78. Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop (2007). The ocular surface. 2007;5(2):108-152.

    Google Scholar 

  79. Bromberg BB, Cripps MM, Welch MH. Sympathomimetic protein secretion by young and aged lacrimal gland. Current eye research. 1986;5(3):217-223.

    Article  Google Scholar 

  80. Bromberg BB, Welch MH. Lacrimal protein secretion: comparison of young and old rats. Experimental eye research. 1985;40(2):313-320.

    Article  Google Scholar 

  81. Draper CE, Adeghate E, Lawrence PA, Pallot DJ, Garner A, Singh J. Age-related changes in morphology and secretory responses of male rat lacrimal gland. J Auton Nerv Syst. 1998;69(2-3):173-183.

    Article  Google Scholar 

  82. Jester BE, Nien CJ, Winkler M, Brown DJ, Jester JV. Volumetric reconstruction of the mouse meibomian gland using high-resolution nonlinear optical imaging. Anat Rec (Hoboken). 2011;294(2):185-192.

    Article  Google Scholar 

  83. Nien CJ, Paugh JR, Massei S, Wahlert AJ, Kao WW, Jester JV. Age-related changes in the meibomian gland. Experimental eye research. 2009;89(6):1021-1027.

    Article  Google Scholar 

  84. Borchman D, Foulks GN, Yappert MC, Milliner SE. Changes in human meibum lipid composition with age using nuclear magnetic resonance spectroscopy. Investigative ophthalmology & visual science. 2012;53(1):475-482.

    Article  Google Scholar 

  85. Marquardt R, Wenz FH. [Histological studies of goblet cell counts in human conjunctiva (author’s transl)]. Klin Monbl Augenheilkd. 1979;175(5):692-696.

    Google Scholar 

  86. Kessing SV. Mucous gland system of the conjunctiva. A quantitative normal anatomical study. Acta Ophthalmol (Copenh). 1968:Suppl 95:91+.

    Google Scholar 

  87. Abdel-Khalek LM, Williamson J, Lee WR. Morphological changes in the human conjunctival epithelium. I. In the normal elderly population. The British journal of ophthalmology. 1978;62(11):792-799.

    Article  Google Scholar 

  88. Baudouin C, Labbe A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res. 2010;29(4):312-334.

    Article  Google Scholar 

  89. Wilson WS, Duncan AJ, Jay JL. Effect of benzalkonium chloride on the stability of the precorneal tear film in rabbit and man. The British journal of ophthalmology. 1975;59(11):667-669.

    Article  Google Scholar 

  90. Pisella PJ, Fillacier K, Elena PP, Debbasch C, Baudouin C. Comparison of the effects of preserved and unpreserved formulations of timolol on the ocular surface of albino rabbits. Ophthalmic Res. 2000;32(1):3-8.

    Article  Google Scholar 

  91. Yalvac IS, Gedikoglu G, Karagoz Y, et al. Effects of antiglaucoma drugs on ocular surface. Acta Ophthalmol Scand. 1995;73(3):246-248.

    Article  Google Scholar 

  92. Baudouin C. Detrimental effect of preservatives in eyedrops: implications for the treatment of glaucoma. Acta Ophthalmol. 2008;86(7):716-726.

    Article  Google Scholar 

  93. Servat JJ, Bernardino CR. Effects of common topical antiglaucoma medications on the ocular surface, eyelids and periorbital tissue. Drugs Aging. 2011;28(4):267-282.

    Article  Google Scholar 

  94. Kashkouli MB, Pakdel F, Hashemi M, et al. Comparing anatomical pattern of topical anti-glaucoma medications associated lacrimal obstruction with a control group. Orbit. 2010;29(2):65-69.

    Article  Google Scholar 

  95. Kashkouli MB, Rezaee R, Nilforoushan N, Salimi S, Foroutan A, Naseripour M. Topical antiglaucoma medications and lacrimal drainage system obstruction. Ophthal Plast Reconstr Surg. 2008;24(3):172-175.

    Article  Google Scholar 

  96. Nuzzi R, Finazzo C, Cerruti A. Adverse effects of topical antiglaucomatous medications on the conjunctiva and the lachrymal (Brit. Engl) response. Int Ophthalmol. 1998;22(1):31-35.

    Google Scholar 

  97. Mocan MC, Uzunosmanoglu E, Kocabeyoglu S, Karakaya J, Irkec M. The Association of Chronic Topical Prostaglandin Analog Use With Meibomian Gland Dysfunction. J Glaucoma. 2016;25(9):770-774.

    Article  Google Scholar 

  98. Uzunosmanoglu E, Mocan MC, Kocabeyoglu S, Karakaya J, Irkec M. Meibomian Gland Dysfunction in Patients Receiving Long-Term Glaucoma Medications. Cornea. 2016;35(8):1112-1116.

    Article  Google Scholar 

  99. Arita R, Itoh K, Maeda S, et al. Comparison of the long-term effects of various topical antiglaucoma medications on meibomian glands. Cornea. 2012;31(11):1229-1234.

    Article  Google Scholar 

  100. Derous D, de Keizer RJ, de Wolff-Rouendaal D, Soudijn W. Conjunctival keratinisation, an abnormal reaction to an ocular beta-blocker. Acta Ophthalmol (Copenh). 1989;67(3):333-338.

    Article  Google Scholar 

  101. Herreras JM, Pastor JC, Calonge M, Asensio VM. Ocular surface alteration after long-term treatment with an antiglaucomatous drug. Ophthalmology. 1992;99(7):1082-1088.

    Article  Google Scholar 

  102. Arici MK, Arici DS, Topalkara A, Guler C. Adverse effects of topical antiglaucoma drugs on the ocular surface. Clin Exp Ophthalmol. 2000;28(2):113-117.

    Article  Google Scholar 

  103. Tseng SC, Hirst LW, Maumenee AE, Kenyon KR, Sun TT, Green WR. Possible mechanisms for the loss of goblet cells in mucin-deficient disorders. Ophthalmology. 1984;91(6):545-552.

    Article  Google Scholar 

  104. Takahashi N. A new method evaluating quantitative time-dependent cytotoxicity of ophthalmic solutions in cell culture. Beta-adrenergic blocking agents. Graefes Arch Clin Exp Ophthalmol. 1983;220(6):264-267.

    Article  Google Scholar 

  105. Tutt R, Bradley A, Begley C, Thibos LN. Optical and visual impact of tear break-up in human eyes. Investigative ophthalmology & visual science. 2000;41(13):4117-4123.

    Google Scholar 

  106. Lee SH, Tseng SC. Rose bengal staining and cytologic characteristics associated with lipid tear deficiency. Am J Ophthalmol. 1997;124(6):736-750.

    Article  Google Scholar 

  107. Bjerrum KB. Test and symptoms in keratoconjunctivitis sicca and their correlation. Acta Ophthalmol Scand. 1996;74(5):436-441.

    Article  Google Scholar 

  108. Vitali C, Moutsopoulos HM, Bombardieri S. The European Community Study Group on diagnostic criteria for Sjogren’s syndrome. Sensitivity and specificity of tests for ocular and oral involvement in Sjogren’s syndrome. Ann Rheum Dis. 1994;53(10):637-647.

    Article  Google Scholar 

  109. Narayanan S, Redfern RL, Miller WL, Nichols KK, McDermott AM. Dry eye disease and microbial keratitis: is there a connection? The ocular surface. 2013;11(2):75-92.

    Article  Google Scholar 

  110. Kwong MS, Evans DJ, Ni M, Cowell BA, Fleiszig SM. Human tear fluid protects against Pseudomonas aeruginosa keratitis in a murine experimental model. Infect Immun. 2007;75(5):2325-2332.

    Article  Google Scholar 

  111. Jhanji V, Constantinou M, Taylor HR, Vajpayee RB. Microbiological and clinical profiles of patients with microbial keratitis residing in nursing homes. The British journal of ophthalmology. 2009;93(12):1639-1642.

    Article  Google Scholar 

  112. Boiko EV, Chernysh VF, Pozniak AL, Ageev VS. [To the role of Chlamydia infection in the development of dry eye]. Vestn Oftalmol. 2008;124(4):16-19.

    Google Scholar 

  113. Krasny J, Hruba D, Netukova M, Kodat V, Tomasova BJ. [Chlamydia pneumoniae in the etiology of the keratoconjunctivitis sicca in adult patients (a pilot study)]. Cesk Slov Oftalmol. 2009;65(3):102-106.

    Google Scholar 

  114. Bourcier T, Thomas F, Borderie V, Chaumeil C, Laroche L. Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. The British journal of ophthalmology. 2003;87(7):834-838.

    Article  Google Scholar 

  115. Keay L, Edwards K, Naduvilath T, et al. Microbial keratitis predisposing factors and morbidity. Ophthalmology. 2006;113(1):109-116.

    Article  Google Scholar 

  116. Albietz JM, Lenton LM. Effect of antibacterial honey on the ocular flora in tear deficiency and meibomian gland disease. Cornea. 2006;25(9):1012-1019.

    Article  Google Scholar 

  117. Graham JE, Moore JE, Jiru X, et al. Ocular pathogen or commensal: a PCR-based study of surface bacterial flora in normal and dry eyes. Investigative ophthalmology & visual science. 2007;48(12):5616-5623.

    Article  Google Scholar 

  118. Dougherty JM, McCulley JP. Comparative bacteriology of chronic blepharitis. The British journal of ophthalmology. 1984;68(8):524-528.

    Article  Google Scholar 

  119. Seal DV, McGill JI, Mackie IA, Liakos GM, Jacobs P, Goulding NJ. Bacteriology and tear protein profiles of the dry eye. The British journal of ophthalmology. 1986;70(2):122-125.

    Article  Google Scholar 

  120. Sharma S. Diagnosis of external ocular infections: microbiological processing and interpretation. The British journal of ophthalmology. 2000;84(2):229.

    Article  Google Scholar 

  121. Ta CN, Chang RT, Singh K, et al. Antibiotic resistance patterns of ocular bacterial flora: a prospective study of patients undergoing anterior segment surgery. Ophthalmology. 2003;110(10):1946-1951.

    Article  Google Scholar 

  122. Cuello OH, Caorlin MJ, Reviglio VE, et al. Rhodococcus globerulus keratitis after laser in situ keratomileusis. J Cataract Refract Surg. 2002;28(12):2235-2237.

    Article  Google Scholar 

  123. Fleiszig SM, Evans DJ. Contact lens infections: can they ever be eradicated? Eye Contact Lens. 2003;29(1 Suppl):S67-71; discussion S83-64, S192-194.

    Google Scholar 

  124. Shine WE, Silvany R, McCulley JP. Relation of cholesterol-stimulated Staphylococcus aureus growth to chronic blepharitis. Investigative ophthalmology & visual science. 1993;34(7):2291-2296.

    Google Scholar 

  125. Redfern RL, McDermott AM. Toll-like receptors in ocular surface disease. Experimental eye research. 2010;90(6):679-687.

    Article  Google Scholar 

  126. Pearlman E, Johnson A, Adhikary G, et al. Toll-like receptors at the ocular surface. The ocular surface. 2008;6(3):108-116.

    Article  Google Scholar 

  127. Lee HS, Hattori T, Park EY, Stevenson W, Chauhan SK, Dana R. Expression of toll-like receptor 4 contributes to corneal inflammation in experimental dry eye disease. Investigative ophthalmology & visual science. 2012;53(9):5632-5640.

    Article  Google Scholar 

  128. Lan J, Willcox MD, Jackson GD. Effect of tear-specific immunoglobulin A on the adhesion of Pseudomonas aeruginosa I to contact lenses. Aust N Z J Ophthalmol. 1999;27(3-4):218-220.

    Article  Google Scholar 

  129. Mantis NJ, Rol N, Corthesy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011;4(6):603-611.

    Article  Google Scholar 

  130. Caffery B, Joyce E, Boone A, et al. Tear lipocalin and lysozyme in Sjogren and non-Sjogren dry eye. Optom Vis Sci. 2008;85(8):661-667.

    Article  Google Scholar 

  131. Buckland AG, Wilton DC. The antibacterial properties of secreted phospholipases A(2). Biochim Biophys Acta. 2000;1488(1-2):71-82.

    Article  Google Scholar 

  132. Aho VV, Nevalainen TJ, Saari KM. Group IIA phospholipase A2 content of tears in patients with keratoconjunctivitis sicca. Graefes Arch Clin Exp Ophthalmol. 2002;240(7):521-523.

    Article  Google Scholar 

  133. Argueso P, Balaram M, Spurr-Michaud S, Keutmann HT, Dana MR, Gipson IK. Decreased levels of the goblet cell mucin MUC5AC in tears of patients with Sjogren syndrome. Investigative ophthalmology & visual science. 2002;43(4):1004-1011.

    Google Scholar 

  134. Govindarajan B, Gipson IK. Membrane-tethered mucins have multiple functions on the ocular surface. Experimental eye research. 2010;90(6):655-663.

    Article  Google Scholar 

  135. McDermott AM. The role of antimicrobial peptides at the ocular surface. Ophthalmic Res. 2009;41(2):60-75.

    Article  MathSciNet  Google Scholar 

  136. Huang LC, Reins RY, Gallo RL, McDermott AM. Cathelicidin-deficient (Cnlp -/-) mice show increased susceptibility to Pseudomonas aeruginosa keratitis. Investigative ophthalmology & visual science. 2007;48(10):4498-4508.

    Article  Google Scholar 

  137. Mantelli F, Massaro-Giordano M, Macchi I, Lambiase A, Bonini S. The cellular mechanisms of dry eye: from pathogenesis to treatment. J Cell Physiol. 2013;228(12):2253-2256.

    Article  Google Scholar 

  138. Mosimann BL, White MV, Hohman RJ, Goldrich MS, Kaulbach HC, Kaliner MA. Substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide increase in nasal secretions after allergen challenge in atopic patients. J Allergy Clin Immunol. 1993;92(1 Pt 1):95-104.

    Google Scholar 

  139. Kovacs I, Ludany A, Koszegi T, et al. Substance P released from sensory nerve endings influences tear secretion and goblet cell function in the rat. Neuropeptides. 2005;39(4):395-402.

    Article  Google Scholar 

  140. Mantelli F, Micera A, Sacchetti M, Bonini S. Neurogenic inflammation of the ocular surface. Curr Opin Allergy Clin Immunol. 2010;10(5):498-504.

    Article  Google Scholar 

  141. Beuerman RW, Stern ME. Neurogenic inflammation: a first line of defense for the ocular surface. The ocular surface. 2005;3(4 Suppl):S203-206.

    Article  Google Scholar 

  142. Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology. 2008;123(3):398-410.

    Article  Google Scholar 

  143. Tuisku IS, Konttinen YT, Konttinen LM, Tervo TM. Alterations in corneal sensitivity and nerve morphology in patients with primary Sjogren’s syndrome. Experimental eye research. 2008;86(6):879-885.

    Article  Google Scholar 

  144. Miljanovic B, Dana R, Sullivan DA, Schaumberg DA. Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol. 2007;143(3):409-415.

    Article  Google Scholar 

  145. Mertzanis P, Abetz L, Rajagopalan K, et al. The relative burden of dry eye in patients’ lives: comparisons to a U.S. normative sample. Investigative ophthalmology & visual science. 2005;46(1):46-50.

    Article  Google Scholar 

  146. Nelson JD, Helms H, Fiscella R, Southwell Y, Hirsch JD. A new look at dry eye disease and its treatment. Advances in therapy. 2000;17(2):84-93.

    Article  Google Scholar 

  147. Hirsch JD. Considerations in the pharmacoeconomics of glaucoma. Manag Care. 2002;11(11 Suppl):32-37.

    Google Scholar 

  148. Reddy P, Grad O, Rajagopalan K. The economic burden of dry eye: a conceptual framework and preliminary assessment. Cornea. 2004;23(8):751-761.

    Article  Google Scholar 

  149. Kozma CMH, J.D.; Wojcik, A.R.;. Economic and quality of life impact of dry eye symptoms. Poster at the Annual Meeting of the Association for Research in Vision and Ophthalmology; April 30-May 5, 2000, 2000; Fort Lauderdale, Florida.

    Google Scholar 

  150. Lee JTT, C.W. Development of an economic model to assess costs and outcomes associated with dry eye disease. Poster at the 2000 Spring Practice and Research Forum of the American College of Clinical Pharmacy; April 2-5, 2000, 2000; Monterey, California.

    Google Scholar 

  151. Smeeding JEM, C.; Walt, J.G. Dry-eye increases in health care and utilization and expenditures. Poster at the Sixth Annual International Meeting of the International Society for Pharmacoeconomics and Outcomes Research; May 20-23, 2001, 2001; Arlington, Virginia.

    Google Scholar 

  152. Pflugfelder SC. Prevalence, burden, and pharmacoeconomics of dry eye disease. Am J Manag Care. 2008;14(3 Suppl):S102-106.

    Google Scholar 

  153. Sall K, Stevenson OD, Mundorf TK, Reis BL. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. CsA Phase 3 Study Group. Ophthalmology. 2000;107(4):631-639.

    Article  Google Scholar 

  154. Cross WD, Lay LF, Jr., Walt JG, Kozma CM. Clinical and economic implications of topical cyclosporin A for the treatment of dry eye. Manag Care Interface. 2002;15(9):44-49.

    Google Scholar 

Download references

Funding

This work was supported by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Clinical Sciences Research EPID-006-15S (Dr. Galor), NIH Center Core Grant P30EY014801, R01EY026174 (Dr. Galor), Research to Prevent Blindness Unrestricted Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Galor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paranjpe, V., Galor, A. (2019). The Tear Film: Pathological Conditions. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_15

Download citation

Publish with us

Policies and ethics