System of Nudge Theory-Based ICT Applications for Older Citizens: The SENIOR Project

  • Giada PietrabissaEmail author
  • Italo Zoppis
  • Giancarlo Mauri
  • Roberta Ghiretti
  • Emanuele Maria Giusti
  • Roberto Cattivelli
  • Chiara Spatola
  • Gian Mauro Manzoni
  • Gianluca Castelnuovo
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 288)


Objective: Mild Cognitive Impairment (MCI) is rapidly becoming one of the most common clinical manifestation affecting the elderly. The main aim of the SENIOR Project [SystEm of Nudge theory-based Information and Communications Technology (ICT) applications for OldeR citizens] is the development and validation of a new Nudge theory-based ICT coach system for monitoring and empowering persons with MCI. Methods: a multi-center randomized controlled clinical trial (RCT) involving 200 senior citizens with MCI will be implemented. Online assessment of demographic, psychological, neuropsychological, and behavioral outcomes will be carried out through the user’s device/smartwatch. A machine learning algorithm-based customized profile will elaborate specific nudge-based notifications and suggestions will be provided to the user via SENIOR app. Expected results and conclusions: real-time monitoring and tutoring will decelerate the worsening of clinical condition and will improve the general perceived wellbeing of persons with MCI – also empowering care providers through dissemination of knowledge on the condition functioning and therapy. Moreover, the provision of tailored care actions will contribute to a more sustainable national and local healthcare systems.


Elderly Mild cognitive impairment Nudge theory Big data Machine learning 


  1. 1.
    United Nations Department of Economic and Social Affairs, P.D., World Population Ageing 2015 (ST/ESA/SER.A/390) (2015)Google Scholar
  2. 2.
    Meek, K.P., et al.: Restricted social engagement among adults living with chronic conditions. Int. J. Environ. Res. Public Health 15, 158 (2018)CrossRefGoogle Scholar
  3. 3.
    Lattanzio, F., et al.: Advanced technology care innovation for older people in Italy: necessity and opportunity to promote health and wellbeing. J. Am. Med. Dir Assoc. 15(7), 457–466 (2014)CrossRefGoogle Scholar
  4. 4.
    Littlejohn, H.: Promoting wellbeing in older people with cognitive impairment. Nurs. Older People 12(10), 37 (2001)Google Scholar
  5. 5.
    Sobral, A., de Araujo, C.M.T., Sobral, M.F.F.: Mild cognitive impairment in the elderly Relationship between communication and functional capacity. Dement. Neuropsychol. 12(2), 165–172 (2018)CrossRefGoogle Scholar
  6. 6.
    Petersen, R.C., et al.: Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56(3), 303–308 (1999)CrossRefGoogle Scholar
  7. 7.
    Eshkoor, S.A., et al.: Mild cognitive impairment and its management in older people. Clin. Interv. Aging 10, 687–693 (2015)CrossRefGoogle Scholar
  8. 8.
    Saint-Pierre, C., Herskovic, V., Sepulveda, M.: Multidisciplinary collaboration in primary care: a systematic review. Fam. Pract. 35(2), 132–141 (2018)CrossRefGoogle Scholar
  9. 9.
    Fang, M.L., et al.: Informing understandings of mild cognitive impairment for older adults: implications from a scoping review. J. Appl. Gerontol. 36(7), 808–839 (2017)CrossRefGoogle Scholar
  10. 10.
    Krell-Roesch, J., et al.: Association between mentally stimulating activities in late life and the outcome of incident mild cognitive impairment, with an analysis of the APOE ε4 Genotype. JAMA Neurol. 74(3), 332–338 (2017)CrossRefGoogle Scholar
  11. 11.
    Choi, Y.K., et al.: Smartphone applications to support sleep self-management: review and evaluation. J. Clin. Sleep Med. 14(10), 1783–1790 (2018)CrossRefGoogle Scholar
  12. 12.
    Pellegrini, C.A., et al.: Smartphone applications to support weight loss: current perspectives. Adv. Health Care Technol. 1, 13–22 (2015)CrossRefGoogle Scholar
  13. 13.
    Reeder, B., David, A.: Health at hand: a systematic review of smart watch uses for health and wellness. J. Biomed. Inf. 63, 269–276 (2016)CrossRefGoogle Scholar
  14. 14.
    Rosales, A., et al.: Older people and smartwatches, initial experiences. El Profesional de la Informacion 26(3), 457 (2017)CrossRefGoogle Scholar
  15. 15.
    Stradolini, F., Lavalle, E., De Micheli, G., Motto Ros, P., Demarchi, D., Carrara, S.: Paradigm-shifting players for iot: smart-watches for intensive care monitoring. In: Perego, P., Andreoni, G., Rizzo, G. (eds.) MobiHealth 2016. LNICST, vol. 192, pp. 71–78. Springer, Cham (2017). Scholar
  16. 16.
    Ehn, M., et al.: Activity monitors as support for older persons’ physical activity in daily life: qualitative study of the users’ experiences. JMIR Mhealth Uhealth 6, e34 (2018)CrossRefGoogle Scholar
  17. 17.
    Thaler, R.H., Sunstein, C.R.: Nudge: Improving Decisions about Health, Wealth, and Happiness. Yale University Press, New Haven and London (2009)Google Scholar
  18. 18.
    Arno, A., Thomas, S.: The efficacy of nudge theory strategies in influencing adult dietary behaviour: a systematic review and meta-analysis. BMC Public Health 16, 676 (2016)CrossRefGoogle Scholar
  19. 19.
    Tao, J., Shuijing, H.: The elderly and the big data how older adults deal with digital privacy. In: International Conference on Intelligent Transportation, Big Data and Smart City (ICITBS), Changsha, China (2016)Google Scholar
  20. 20.
    Folstein, M.E., Folstein, S.E., PR, M.: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatry Res. 12(3), 189–198 (1975)CrossRefGoogle Scholar
  21. 21.
    Jak, A.J., et al.: Quantification of five neuropsychological approaches to defining mild cognitive impairment. Am. J. Geriatr. Psychiatry 17(5), 368–375 (2009)CrossRefGoogle Scholar
  22. 22.
    First, M.B., et al.: Structured Clinical Interview for DSM-5-Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV). American Psychiatric Association, Arlington (2015)Google Scholar
  23. 23.
    Frenkel, W.J., et al.: Validation of the Charlson comorbidity index in acutely hospitalized elderly adults: a prospective cohort study. J. Am. Geriatr. Soc. 62(2), 342–346 (2014)CrossRefGoogle Scholar
  24. 24.
    Ben-Porath, Y.S., Sherwood, N.E.: The MMPI-2 Content Component Scales: Development, Psychometric Characteristics, and Clinical Application. University of Minnesota Press, Minneapolis (1993)Google Scholar
  25. 25.
    Verhagen, S.J.W., et al.: Use of the experience sampling method in the context of clinical trials. Evid. Based Ment Health 19(3), 86–89 (2016)CrossRefGoogle Scholar
  26. 26.
    Apolone, G., Mosconi, P.: The Italian SF-36 Health Survey: translation, validation and norming. J. Clin. Epidemiol. 51(11), 1025–1036 (1998)CrossRefGoogle Scholar
  27. 27.
    Savoia, E., et al.: Assessing the construct validity of the Italian version of the EQ-5D: preliminary results from a cross-sectional study in North Italy. Health Qual. Life Outcomes 4, 47 (2006)CrossRefGoogle Scholar
  28. 28.
    Sarno, I., et al.: SCL-90-R Symptom Checklist-90-R Adattamento italiano Firenze Giunti, Organizzazioni Speciali (2011)Google Scholar
  29. 29.
    Lo Coco, G., et al.: The factorial structure of the outcome questionnaire-45: a study with an Italian sample. Clin. Psychol. Psychother. 15(6), 418–423 (2008)CrossRefGoogle Scholar
  30. 30.
    Chiappelli, M., et al.: The outcome questionnaire 45.2. Italian validation of an instrument for the assessment of psychological treatments. Epidemiol. Psichiatr. Soc. 17(2), 152–161 (2008)CrossRefGoogle Scholar
  31. 31.
    Sica, C., Ghisi, M.: The Italian versions of the beck anxiety inventory and the beck depression Inventory-II: psychometric properties and discriminant power. In: Lange, M.A. (ed.) Leading-Edge Psychological Tests and Testing Research, NOVA Science Publishers (2007)Google Scholar
  32. 32.
    Castronovo, V., et al.: Validation study of the Italian version of the Insomnia Severity Index (ISI). Neurol Sci 37(9), 1517–1524 (2016)CrossRefGoogle Scholar
  33. 33.
    Curcio, G., et al.: Validity of the Italian version of the Pittsburgh Sleep Quality Index (PSQI). Neurol. Sci. 34(4), 511–519 (2013)CrossRefGoogle Scholar
  34. 34.
    Yip, M.P., et al.: Development of the telemedicine satisfaction questionnaire to evaluate patient satisfaction with telemedicine: a preliminary study. J. Telemed. Telecare 9(1), 46–50 (2003)CrossRefGoogle Scholar
  35. 35.
    Mao, H.F., et al.: Cross-cultural adaptation and validation of the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0): the development of the Taiwanese version. J. Telemed Telecare 24(5), 412–421 (2010)Google Scholar
  36. 36.
    Demers, L., Weiss-Lambrou, R., Ska, B.: Development of the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST). Assist. Technol. 8(1), 3–13 (1996)CrossRefGoogle Scholar
  37. 37.
    Graffigna, G., et al.: Measuring patient activation in Italy: Translation, adaptation and validation of the Italian version of the patient activation measure 13 (PAM13-I). BMC Med. Inf. Decis. Mak. 15, 109 (2015)CrossRefGoogle Scholar
  38. 38.
    Graffigna, G., et al.: Measuring patient engagement: development and psychometric properties of the Patient Health Engagement (PHE) scale. Front. Psychol. 6, 274 (2015)CrossRefGoogle Scholar
  39. 39.
    Pietrabissa, G., et al.: Stages of change in obesity and weight management: factorial structure of the Italian version of the university of Rhode island change assessment scale. Eat Weight Disord. 22(2), 361–367 (2017)CrossRefGoogle Scholar
  40. 40.
    Baratta, S., Colorio, C., Zimmermann-Tansella, C.: Inter-rater reliability of the Italian version of the Paykel Scale of stressful life events. J. Affect. Disord. 8(3), 279–282 (1985)CrossRefGoogle Scholar
  41. 41.
    Kolotkin, R.L., Head, S., Brookhart, A.: Construct validity of the impact of weight on quality of life questionnaire. Obes. Res. 5(5), 434–441 (1997)CrossRefGoogle Scholar
  42. 42.
    Messina, R., et al.: Assessing self-efficacy in type 2 diabetes management: validation of the Italian version of the Diabetes Management Self-Efficacy Scale (IT-DMSES). Health Qual. Life Outcomes 16(1), 71 (2018)CrossRefGoogle Scholar
  43. 43.
    Anderson, R.M., et al.: The Diabetes Empowerment Scale-Short Form (DES-SF). Diab. Care 26(5), 1641–1642 (2003)CrossRefGoogle Scholar
  44. 44.
    Kaplan, E.F., Goodglass, H., Weintraub, S.: The Boston Naming Test Philadelphia. Lea & Febiger, Philadelphia (1983)Google Scholar
  45. 45.
    Delis, D.C., et al.: The California Verbal Learning Test New York. Psychological Corporation (1987)Google Scholar
  46. 46.
    Springate, B.A., et al.: Screening for mild cognitive impairment using the dementia rating scale-2. J. Geriatr. Psychiatry Neurol. 27(2), 139–144 (2014)CrossRefGoogle Scholar
  47. 47.
    Wechsler, D.: Wechsler Memory Scale-Revised New York. Psychological Corporation (1987)Google Scholar
  48. 48.
    Wechsler, D.: Wechsler Adult Intelligence Scale-Revised Manual San Antonio. The Psychological Corporation (1981)Google Scholar
  49. 49.
    Reitan, R.M., Wolfson, D.: The Halstead-Reitan Neuropsychological Test Battery. Neuropsychology Press, Tucson (1985)Google Scholar
  50. 50.
    Wechsler, D.: Wechsler Intelligence Scale for Children-Revised New York. Psychological Corporation (1974)Google Scholar
  51. 51.
    Delis, D.C., Kaplan, E., Kramer, J.H.: Delis-Kaplan Executive Function System (D-KEFS). The Psychological Corporation, San Antonio (2001)Google Scholar
  52. 52.
    Lineweaver, T.T., et al.: A normative study of Nelson’s: (1976) modified version of the Wisconsin card sorting test in healthy older adults. Clin. Neuropsychol. 13, 328–347 (1999)CrossRefGoogle Scholar
  53. 53.
    Ivnik, R.J., et al.: Mayo’s older Americans normative studies: WMS-R norms for ages 56–94. Clin. Neuropsychol. 6, 49–82 (1992)CrossRefGoogle Scholar
  54. 54.
    Norman, M.A., et al.: Demographically corrected norms for the California verbal learning test. J. Clin. Exp. Neuropsychol. 22(1), 80–94 (2000)CrossRefGoogle Scholar
  55. 55.
    Gladsjo, J.A., et al.: Norms for letter and category fluency: demographic corrections for age, education, and ethnicity. Assessment 6(2), 147–178 (1999)CrossRefGoogle Scholar
  56. 56.
    Golubic, R., et al.: Validity of electronically administered recent physical activity questionnaire (RPAQ) in ten European countries. PLoS One 9(3), e92829 (2014)CrossRefGoogle Scholar
  57. 57.
    Baxter, S.D., et al.: A validation study concerning the effects of interview content, retention interval, and grade on children’s recall accuracy for dietary intake and/or physical activity. J. Acad. Nutr. Diet. 114(12), 1902–1914 (2014)CrossRefGoogle Scholar
  58. 58.
    Martien, S., et al.: Energy expenditure in institutionalized older adults: validation of sensewear mini. Med. Sci. Sports Exerc. 47(6), 1265–1271 (2015)CrossRefGoogle Scholar
  59. 59.
    Machac, S., et al.: Validation of physical activity monitors in individuals with diabetes: energy expenditure estimation by the multisensor sensewear Armband Pro3 and the step counter Omron HJ-720 against indirect calorimetry during walking. Diab. Technol. Ther. 15(5), 413–418 (2013)CrossRefGoogle Scholar
  60. 60.
    Gardner, B., de Bruijn, G.J., Lally, P.: A systematic review and meta-analysis of applications of the self-report habit index to nutrition and physical activity behaviours. Ann. Behav. Med. 42(2), 174–187 (2011)CrossRefGoogle Scholar
  61. 61.
    Graf, C.: The Lawton instrumental activities of daily living (IADL) scale. Medsurg Nurs. 18(5), 315–316 (2009)Google Scholar
  62. 62.
    Janca, A., et al.: The World Health Organization Short Disability Assessment Schedule (WHO DAS-S): a tool for the assessment of difficulties in selected areas of functioning of patients with mental disorders. Soc. Psychiatry Psychiatr. Epidemiol. 31(6), 349–354 (1996)CrossRefGoogle Scholar
  63. 63.
    World Health Organization, International classification of functioning, disability and health: ICF Geneva World Health Organization.
  64. 64.
    Kraemer, H.C., et al.: Mediators and moderators of treatment effects in randomized clinical trials. Arch. Gen. Psychiatry 59(10), 877–883 (2002)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Giada Pietrabissa
    • 1
    • 2
    Email author
  • Italo Zoppis
    • 3
  • Giancarlo Mauri
    • 3
  • Roberta Ghiretti
    • 4
  • Emanuele Maria Giusti
    • 1
    • 2
  • Roberto Cattivelli
    • 1
    • 2
  • Chiara Spatola
    • 1
    • 2
  • Gian Mauro Manzoni
    • 1
    • 5
  • Gianluca Castelnuovo
    • 1
    • 2
  1. 1.Psychology Research LaboratoryIstituto Auxologico Italiano IRCCSMilanItaly
  2. 2.Department of PsychologyCatholic University of MilanMilanItaly
  3. 3.Department of Informatics, Systems and CommunicationUniversità Degli Studi Di Milano-BicoccaMilanItaly
  4. 4.Auser Regione LombardiaMilanItaly
  5. 5.Faculty of PsychologyeCampus UniversityNovedrateItaly

Personalised recommendations