Advertisement

Beyond Cognitive Rehabilitation: Immersive but Noninvasive Treatment for Elderly

  • Elisa PedroliEmail author
  • Pietro Cipresso
  • Silvia Serino
  • Michelle Toti
  • Karine Goulen
  • Mauro Grigioni
  • Marco Stramba-Badiale
  • Andrea Gaggioli
  • Giuseppe Riva
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 288)

Abstract

With the rapid increase of the aging population in Italy, the number of subjects with cognitive deficits also increases. Two of the most damaged cognitive domains since the first phase of decline are Executive Functions and Spatial Memory. The general aim of this study is to evaluate the efficacy of a novel VR-based mixed training protocol for improving executive functions and spatial memory in patients with cognitive decline. To achieve this objective, the neuropsychological performance of two groups of a subjects with cognitive decline were compared before and at the end of the training period. One group underwent a classic rehabilitation protocol, the other underwent the new VR-based protocol. The results showed an improve in executive functioning in the VR group after the training period.

Keywords

Cognitive decline Rehabilitation Virtual reality CAVE Executive functions Spatial memory 

Notes

Acknowledgments

This work is supported by the Italian funded project “High-end and Low-End Virtual Reality Systems for the Rehabilitation of Frailty in the Elderly” (PE-2013-02355948).

References

  1. 1.
    Eurostat: Population structure and ageing—statistics explained (2018). http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing. Accessed 29 Jan 2018
  2. 2.
    Petersen, R., et al.: Mild cognitive impairment: a concept in evolution. J. Intern. Med. 275(3), 214–228 (2014)CrossRefGoogle Scholar
  3. 3.
    Petersen, R.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)CrossRefGoogle Scholar
  4. 4.
    Kelaiditi, E., et al.: Cognitive frailty: rational and definition from an (IANA/IAGG) international consensus group. J. Nutr. Health Aging 17(9), 726–734 (2013)CrossRefGoogle Scholar
  5. 5.
    Maselli, M., et al.: Can physical and cognitive training based on episodic memory be combined in a new protocol for daily training? Aging Clin. Exp. Res., 1–9 (2018)Google Scholar
  6. 6.
    Forte, R., et al.: Enhancing cognitive functioning in the elderly: multicomponent vs resistance training. Clin. Interv. Aging 8, 19 (2013)CrossRefGoogle Scholar
  7. 7.
    Won, C.W., et al.: Modified criteria for diagnosing “cognitive frailty”. Psychiatry Invest. 15(9), 839 (2018)CrossRefGoogle Scholar
  8. 8.
    Delrieu, J., et al.: Neuropsychological profile of “cognitive frailty” subjects in MAPT study. J. Prev. Alzheimer’s Dis. 3(3), 151 (2016)Google Scholar
  9. 9.
    Albert, M., et al.: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia 7(3), 270–279 (2011)CrossRefGoogle Scholar
  10. 10.
    Serino, S., et al.: Detecting early egocentric and allocentric impairments deficits in Alzheimer’s disease: an experimental study with virtual reality. Front. Aging Neurosci. 7(88), 1–10 (2015)Google Scholar
  11. 11.
    Lee, J.-Y., et al.: Spatial memory impairments in amnestic mild cognitive impairment in a virtual radial arm maze. Neuropsychiatric Dis. Treat. 10, 653 (2014)CrossRefGoogle Scholar
  12. 12.
    Pedroli, E., et al.: Exploring virtual reality for the assessment and rehabilitation of executive functions. Int. J. Virtual Augmented Reality (IJVAR) 2(1), 32–47 (2018)CrossRefGoogle Scholar
  13. 13.
    Serino, S., et al.: The role of virtual reality in neuropsychology: the virtual multiple errands test for the assessment of executive functions in Parkinson’s disease. In: Ma, M., Jain, L.C., Anderson, P. (eds.) Virtual, Augmented Reality and Serious Games for Healthcare 1. ISRL, vol. 68, pp. 257–274. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54816-1_14CrossRefGoogle Scholar
  14. 14.
    Sugarman, H., et al.: Use of novel virtual reality system for the assessment and treatment of unilateral spatial neglect: a feasibility study. In: International Conference on Virtual Rehabilitation (ICVR). IEEE, Switzerland (2011)Google Scholar
  15. 15.
    Mirelman, A., et al.: V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurol. 13(1), 15 (2013)CrossRefGoogle Scholar
  16. 16.
    Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009)CrossRefGoogle Scholar
  17. 17.
    Pedroli, E., et al.: Assessment and rehabilitation of neglect using virtual reality: a systematic review. Front. Behav. Neurosci. 9(226), 1–15 (2015)Google Scholar
  18. 18.
    Denmark, T., et al.: Using virtual reality to investigate multitasking ability in individuals with frontal lobe lesions. Neuropsychol. Rehabil. 29, 1–22 (2017)Google Scholar
  19. 19.
    Zucchella, C., et al.: The multidisciplinary approach to Alzheimer’s disease and dementia: a narrative review of non-pharmacological treatment. Front. Neurol. 9(1058) (2018)Google Scholar
  20. 20.
    Lampit, A., Hallock, H., Valenzuela, M.: Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 11(11), 1–18 (2014)CrossRefGoogle Scholar
  21. 21.
    Vance, D.E., Crowe, M.: A proposed model of neuroplasticity and cognitive reserve in older adults. Activities Adapt. Aging 30(3), 61–79 (2006)CrossRefGoogle Scholar
  22. 22.
    Magni, E., et al.: Mini-mental state examination: a normative study in italian elderly population. Eur. J. Neurol. 3(3), 198–202 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pedroli, E., et al.: An immersive cognitive rehabilitation program: a case study. In: Masia, L., Micera, S., Akay, M., Pons, J. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation III. ICNR 2018. Biosystems & Biorobotics, vol. 21, pp. 711–715. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-01845-0_142Google Scholar
  24. 24.
    Pedroli, E., Serino, S., Stramba-Badiale, M., Riva, G.: An innovative virtual reality-based training program for the rehabilitation of cognitive frail patients. In: Oliver, N., Serino, S., Matic, A., Cipresso, P., Filipovic, N., Gavrilovska, L. (eds.) MindCare/FABULOUS/IIOT 2015-2016. LNICST, vol. 207, pp. 62–66. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74935-8_8CrossRefGoogle Scholar
  25. 25.
    Novelli, G., et al.: Tre test clinici di ricerca e produzione lessicale. Taratura su sogetti normali. Archivio di psicologia neurologia e psichiatria 47(4), 477–506 (1986)Google Scholar
  26. 26.
    Appollonio, I., et al.: The Frontal Assessment Battery (FAB): normative values in an Italian population sample. Neurol. Sci. 26(2), 108–116 (2005)CrossRefGoogle Scholar
  27. 27.
    Monaco, M., et al.: Forward and backward span for verbal and visuo-spatial data: standardization and normative data from an Italian adult population. Neurol. Sci. 34(5), 749–754 (2012)CrossRefGoogle Scholar
  28. 28.
    Spinnler, H., Tognoni, G.: Standardizzazione e taratura italiana di test neuropsicologici. Masson Italia Periodici, Milano (1987)Google Scholar
  29. 29.
    Mondini, S., et al.: Esame neuropsicologico breve. Raffaello Cortina Editore, Milano (2003)Google Scholar
  30. 30.
    Cipresso, P., et al.: Virtual multiple errands test (VMET): a virtual reality-based tool to detect early executive functions deficit in Parkinson’s disease. Front. Behav. Neurosci. 8(405), 1–11 (2014)Google Scholar
  31. 31.
    Serino, S., Riva, G.: How different spatial representations interact in virtual environments: the role of mental frame syncing. Cognit. Process. 16(2), 191–201 (2015)CrossRefGoogle Scholar
  32. 32.
    Serino, S., Riva, G.: What is the role of spatial processing in the decline of episodic memory in Alzheimer’s disease? The “mental frame syncing” hypothesis. Front. Aging Neurosci. 6(33), 1–7 (2014)Google Scholar
  33. 33.
    Serino, S., et al.: A novel virtual reality-based training protocol for the enhancement of the “mental frame syncing” in individuals with Alzheimer’s disease: a development-of-concept trial. Front. Aging Neurosci. 9(240), 1–12 (2017)Google Scholar
  34. 34.
    Pedroli, E., et al.: Characteristics, usability, and users experience of a system combining cognitive and physical therapy in a virtual environment: positive bike. Sensors 18(7), 2343 (2018)CrossRefGoogle Scholar
  35. 35.
    Gaggioli, A., et al.: “Positive Bike”-an immersive biking experience for combined physical and cognitive training of elderly patient. Ann. Rev. Cybertherapy Telemed. 15, 196–199 (2017)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Elisa Pedroli
    • 1
    Email author
  • Pietro Cipresso
    • 1
    • 2
  • Silvia Serino
    • 3
  • Michelle Toti
    • 1
  • Karine Goulen
    • 4
  • Mauro Grigioni
    • 5
  • Marco Stramba-Badiale
    • 4
  • Andrea Gaggioli
    • 1
    • 2
  • Giuseppe Riva
    • 1
    • 2
  1. 1.Applied Technology for Neuro-Psychology LabIRCCS Istituto Auxologico ItalianoMilanItaly
  2. 2.Department of PsychologyUniversità Cattolica del Sacro CuoreMilanItaly
  3. 3.MySpace Lab, Department of Clinical NeurosciencesUniversity Hospital Lausanne (CHUV)LausanneSwitzerland
  4. 4.Department of Geriatrics and Cardiovascular MedicineIRCCS Istituto Auxologico ItalianoMilanItaly
  5. 5.National Center of Innovative Technologies in Public HealthIstituto Superiore di SanitàRomeItaly

Personalised recommendations