Usability, Acceptability, and Feasibility of Two Technology-Based Devices for Mental Health Screening in Perinatal Care: A Comparison of Web Versus App

  • Verónica Martínez-BorbaEmail author
  • Carlos Suso-Ribera
  • Jorge Osma
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 288)


The use of Information and Communication Technologies (web pages and apps) in mental health has boosted. However, it is unknown which of these two devices can be better in terms of feasibility and acceptability. Our aim is to compare the feasibility, usability, and user satisfaction of two devices (web vs mobile application) of an online program for perinatal depression screening called HappyMom. In total, 348 and 175 perinatal women registered into HappyMom web and app version, respectively. The assessment protocol included different biopsychosocial evaluations (twice during pregnancy and thrice in the postpartum) and a satisfaction questionnaire. Results showed that a higher percentage of women in the web sample (27.3–51.1%) responded to each assessment compared to the app sample (9.1–53.1%). A smaller proportion of women in web sample never responded to any assessments. By contrast, the percentage of women who responded to all assessments was higher in app sample (longitudinal retention sample was 4.6% of web users and 9.1% of app users). In general, high satisfaction was found in both web and app users. Our result showed that online assessment methods are feasible and acceptable by perinatal women. However, dropout rates are a real problem that urge a solution that will be discussed further in the paper. Web and App devices present different advantages and limitations. The choice of one of them must be made taking into account the study’s objective, the sample characteristics, and the dissemination possibilities.


Information and Communication Technologies Dropouts Satisfaction Assessment Perinatal women 


  1. 1.
    International Telecommunication Union: ICT Facts and Figures (2017).
  2. 2.
    Barrera, A.Z., Kelman, A.R., Muñoz, R.F.: Keywords to recruit Spanish- and English-speaking participants: evidence from an online postpartum depression randomized controlled trial. J. Med. Internet Res. 16, e6 (2014)CrossRefGoogle Scholar
  3. 3.
    Haga, S.M., Drozd, F., Brendryen, H., Slinning, K.: Mamma mia: a feasibility study of a web-based intervention to reduce the risk of postpartum depression and enhance subjective well-being. JMIR Res. Protoc. 2, e29 (2013)CrossRefGoogle Scholar
  4. 4.
    Kim, H., Bracha, Y., Tipnis, A.: Automated depression screening in disadvantaged pregnant women in an urban obstetric clinic. Arch. Womens Ment. Health 10, 163–169 (2007)CrossRefGoogle Scholar
  5. 5.
    Donker, T., Cuijpers, P., Stanley, D., Danaher, B.: The future of perinatal depression identification can information and communication technology optimize effectiveness? (2015)Google Scholar
  6. 6.
    Eurostat: Internet use. Individuals using the Internet for seeking health-related information.
  7. 7.
    Osma, J., Barrera, A.Z., Ramphos, E.: Are pregnant and postpartum women interested in health-related apps? Implications for the prevention of perinatal depression. Cyberpsychol. Behav. Soc. Netw. 19, 412–415 (2016)CrossRefGoogle Scholar
  8. 8.
    Suso-Ribera, C., Castilla, D., Zaragozá, I., Ribera-Canudas, M.V., Botella, C., García-Palacios, A.: Validity, reliability, feasibility, and usefulness of pain monitor, a multidimensional smartphone app for daily monitoring of adults with heterogeneous chronic pain. Clin. J. Pain 34, 900–908 (2018)Google Scholar
  9. 9.
    Ashford, M.T., Olander, E.K., Ayers, S.: Computer- or web-based interventions for perinatal mental health: a systematic review. J. Affect. Disord. 197, 134–146 (2016)CrossRefGoogle Scholar
  10. 10.
    Bakker, D., Kazantzis, N., Rickwood, D., Rickard, N.: Mental health smartphone apps: review and evidence-based recommendations for future developments. JMIR Ment. Health 3, 67 (2016)CrossRefGoogle Scholar
  11. 11.
    Capon, H., Hall, W., Fry, C., Carter, A.: Realising the technological promise of smartphones in addiction research and treatment: an ethical review. Int. J. Drug Policy 36, 47–57 (2016)CrossRefGoogle Scholar
  12. 12.
    Martínez-Borba, V., Suso-ribera, C., Osma, J.: The use of information and communication technologies in perinatal depression screening. Cyberpsychol. Behav. Soc. Netw. 21, 741–752 (2018)CrossRefGoogle Scholar
  13. 13.
    Pospos, S., et al.: Web-based tools and mobile applications to mitigate burnout, depression, and suicidality among healthcare students and professionals: a systematic review. Acad. Psychiatry 42, 109–120 (2017)CrossRefGoogle Scholar
  14. 14.
    Rathbone, A., Clarry, L., Prescott, J.: Assessing the efficacy of mobile health apps using the basic principles of cognitive behavioral therapy: systematic review. J. Med. Internet Res. 19, e399 (2017)CrossRefGoogle Scholar
  15. 15.
    Richards, D., Richardson, T.: Computer-based psychological treatments for depression: a systematic review and meta-analysis. Clin. Psychol. Rev. 32, 329–342 (2012)CrossRefGoogle Scholar
  16. 16.
    Hamel, C., et al.: Screening for depression in women during pregnancy or the first year postpartum and in the general adult population: a protocol for two systematic reviews to update a guideline of the Canadian Task Force on Preventive Health Care. Syst. Rev. 8, 1–13 (2019)CrossRefGoogle Scholar
  17. 17.
    Barrera, A.Z., Wickham, R.E., Muñoz, R.F.: Online prevention of postpartum depression for Spanish- and English-speaking pregnant women: a pilot randomized controlled trial. Internet Interv. 2, 257–265 (2015)CrossRefGoogle Scholar
  18. 18.
    Danaher, B.G., et al.: MomMoodBooster web-based intervention for postpartum depression: feasibility trial results. J. Med. Internet Res. 15, e242 (2013)CrossRefGoogle Scholar
  19. 19.
    Jones, B.A., Griffiths, K.M., Christensen, H., Ellwood, D., Bennett, K., Bennett, A.: Online cognitive behaviour training for the prevention of postnatal depression in at-risk mothers: a randomised controlled trial protocol. BMC Psychiatry 13, 265 (2013)CrossRefGoogle Scholar
  20. 20.
    Le, H.-N., Perry, D.F., Sheng, X.: Using the internet to screen for postpartum depression. Matern. Child Health J. 13, 213–221 (2009)CrossRefGoogle Scholar
  21. 21.
    O’Mahen, H.A., et al.: Internet-based behavioral activation–treatment for postnatal depression (Netmums): a randomized controlled trial. J. Affect. Disord. 150, 814–822 (2013)CrossRefGoogle Scholar
  22. 22.
    Faherty, L.J., Hantsoo, L., Appleby, D., Sammel, M.D., Bennett, I.M., Wiebe, D.J.: Movement patterns in women at risk for perinatal depression: use of a mood-monitoring mobile application in pregnancy. J. Am. Med. Inform. Assoc. 24, 746–753 (2017)CrossRefGoogle Scholar
  23. 23.
    Jimenez-Serrano, S., Tortajada, S., Miguel Garcia-Gomez, J., Jiménez-Serrano, S., Tortajada, S., García-Gómez, J.M.: A mobile health application to predict postpartum depression based on machine learning. Telemed. E-Health 21, 567–574 (2015)CrossRefGoogle Scholar
  24. 24.
    Belisario, J.S.M., et al.: A bespoke mobile application for the longitudinal assessment of depression and mood during pregnancy: protocol of a feasibility study. BMJ Open 7, e014469 (2017)CrossRefGoogle Scholar
  25. 25.
    Tsai, A.C., et al.: Antenatal depression case finding by community health workers in South Africa: feasibility of a mobile phone application. Arch. Womens Ment. Health. 17, 423–431 (2014)CrossRefGoogle Scholar
  26. 26.
    Demirci, J., Bogen, D.: Feasibility and acceptability of a mobile app in an ecological momentary assessment of early breastfeeding. Matern. Child Nutr. 13, 1–18 (2017)CrossRefGoogle Scholar
  27. 27.
    Timmer, B.H.B., Hickson, L., Launer, S.: Ecological momentary assessment: Feasibility, construct validity, and future applications. Am. J. Audiol. 26, 436–442 (2017)CrossRefGoogle Scholar
  28. 28.
    Young, A.F., Powers, J.R., Bell, S.L.: Attrition in longitudinal studies: who do you lose? Aust. N. Z. J. Public Health 30, 353–361 (2006)CrossRefGoogle Scholar
  29. 29.
    Karyotaki, E., et al.: Predictors of treatment dropout in self-guided web-based interventions for depression: an ‘individual patient data’ meta-analysis. Psychol. Medici. 45, 2717–2726 (2015)CrossRefGoogle Scholar
  30. 30.
    Christensen, H., Griffiths, K.M., Farrer, L.: Adherence in internet interventions for anxiety and depression. J. Med. Internet Res. 11, e13 (2009)CrossRefGoogle Scholar
  31. 31.
    Becker, S., Miron-Shatz, T., Schumacher, N., Krocza, J., Diamantidis, C., Albrecht, U.-V.: mHealth 2.0: experiences, possibilities, and perspectives. JMIR mHealth uHealth 2, e24 (2014)CrossRefGoogle Scholar
  32. 32.
    Feather, J.S., Howson, M., Ritchie, L., Carter, P.D., Parry, D.T., Koziol-McLain, J.: Evaluation methods for assessing users’ psychological experiences of web-based psychosocial interventions: a systematic review. J. Med. Internet Res. 18, e181 (2016)CrossRefGoogle Scholar
  33. 33.
    Beck, A., Steer, R., Brown, G.: Manual for the Beck Depression Inventory-II. Psychological Corporation, San Antonio (1996)Google Scholar
  34. 34.
    Sanz, J., Perdigón, A., Vázquez, C.: Adaptación española del Inventario para la Depresión de Beck-II (BDI-II): 2. Propiedades psicométricas en población general. Clin. Salud. 14, 249–280 (2003)Google Scholar
  35. 35.
    Cox, J.L., Holden, J.M., Sagovsky, R.: Detection of postnatal depression: development of the 10-item edinburgh postnatal depression scale. Br. J. Psychiatry 150, 782–786 (1987)CrossRefGoogle Scholar
  36. 36.
    Garcia-Esteve, L., Ascaso, C., Ojuel, J., Navarro, P.: validation of the Edinburgh Postnatal Depression Scale (EPDS) in Spanish mothers. J. Affect. Disord. 75, 71–76 (2003)CrossRefGoogle Scholar
  37. 37.
    First, M., Spitzer, R., Gibbon, M., Williams, J.: Entrevista Clínica estructurada para los trastornos del Eje II del DSM-IV, Versión Clínica. MASSON, Barcelona (1999)Google Scholar
  38. 38.
    Eysenck, S.B.G., Eysenck, H.J., Barrett, P.: A revised version of the psychoticism scale. Pers. Individ. Diff. 6, 21–29 (1985)CrossRefGoogle Scholar
  39. 39.
    Ortet, G., Ibáñez, M., Moro, M., Silva, F.: Cuestionario revisado de Personalidad de Eysenck: versiones completa (EPQ‐R) y abreviada (EPQ‐RS), Madrid (2001)Google Scholar
  40. 40.
    Brown, T.A., White, K.S., Forsyth, J.P., Barlow, D.H.: The structure of perceived emotional control: psychometric properties of a revised anxiety control questionnaire. Behav. Ther. 35, 75–99 (2004)CrossRefGoogle Scholar
  41. 41.
    Osma, J., Barrada, J.R., Garciá-Palacios, A., Navarro-Haro, M., Aguilar, A.: Internal structure and clinical utility of the Anxiety Control Questionnaire-Revised (ACQ-R) Spanish version. Span. J. Psychol. 19, E63 (2016)CrossRefGoogle Scholar
  42. 42.
    Sandín, B., Chorot, P., Lostao, L., Joiner, T.E., Santed, M.A., Valiente, R.M.: Escalas PANAS de afecto positivo y negativo: validacion factorial y convergencia transcultural. Psicothema 11, 37–51 (1999)Google Scholar
  43. 43.
    Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063 (1988)CrossRefGoogle Scholar
  44. 44.
    Morejón, A.J.V., García-Bóveda, R.J., Jiménez, R.V.-M.: Escala de autoestima de Rosenberg: fiabilidad y validez en población clínica española. Apunt. Psicol. 22, 247–255 (2004)Google Scholar
  45. 45.
    Rosenberg, M.: Society and the Adolescent Self-image. Princeton University Press, Princeton (1965)CrossRefGoogle Scholar
  46. 46.
    Spielberger, C., Cubero, N., Gorsuch, R., Lushene, R.: Cuestionario de ansiedad estado‐rasgo: manual, Madrid (1982)Google Scholar
  47. 47.
    Spielberger, C.D., Gorsuch, R.L., Lushene, R.E.: The State-Trait Anxiety Inventory. Consulting Psychologists Press Inc., Palo Alto (1970)Google Scholar
  48. 48.
    Echeburúa, E., de Corral, P., Fernandez-Montalvo, J.: Escala de inadaptación (EI): propiedades psicométricas en contextos clínicos. Anál. Modif. Conduct. 26, 325–340 (2000)Google Scholar
  49. 49.
    Rodríguez-Carvajal, R., Moreno-Jiménez, B., Garrosa, E.: Cuestionario de regulación emocional. Versión española. Autorizado por los autores de la versión original en inglés (Gross y John, 2003) (2006)Google Scholar
  50. 50.
    Gross, J., John, O.: Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. J. Pers. Soc. Psychol. 85, 348–362 (2003)CrossRefGoogle Scholar
  51. 51.
    Sandín, B., Chorot, P.: Cuestionario de Afrontamiento del Estrés (CAE): Desarrollo y validación preliminar. Rev. Psicopatol. Psicol. Clín. 8, 39–53 (2003)Google Scholar
  52. 52.
    Mezzich, J., Ruipérez, M., Pérez, C., Yoon, G., Liu, J., Mahmud, S.: The Spanish version of the quality of life index: presentation and validation. J. Nerv. Ment. Dis. 188, 301–305 (2000)CrossRefGoogle Scholar
  53. 53.
    Beck, A., Steer, R.: Manual for the Beck Anxiety Inventory. The Psychological Corporation, San Antonio (1993)Google Scholar
  54. 54.
    Beck, A., Steer, R.: Manual. BAI. Inventario de Ansiedad de Beck (Adaptación española de Sanz, J.). Pearson Educación, Madrid (2011)Google Scholar
  55. 55.
    Diener, E., Emmons, R., Larsen, R., Grifin, S.: The satisfaction with life scale. J. Pers. Assess. 49, 71–75 (1985)CrossRefGoogle Scholar
  56. 56.
    Atienza, F.: Escala de Satisfacción con la vida. Psicothema 12, 314–319 (2000)Google Scholar
  57. 57.
    González de Rivera, J., Morera, A.: La valoración de sucesos vitales: adaptación española de la escala de Holmes y Rahe. Psiquis (Mexico) 4, 7–11 (1983)Google Scholar
  58. 58.
    Holmes, T.H., Rahe, R.H.: The social readjustment rating scale. J. Psychosom. Res. 11, 213–218 (1967)CrossRefGoogle Scholar
  59. 59.
    Landeta, O., Calvete, E.: Adaptación y validación de la escala multidimensional de apoyo social percibido. Ansiedad Estrés 8, 173–182 (2002)Google Scholar
  60. 60.
    Zimet, G.D., Dahlem, N.W., Zimet, S.G., Farley, G.K.: The multidimensional scale of perceived social support. J. Pers. Assess. 52, 30–41 (1988)CrossRefGoogle Scholar
  61. 61.
    Carrobles, J.: Adaptación en población española de la Escala de Ajuste Marital de Locke‐Wallace. In: Cáceres Carrasco, J. (ed.) Manual de Terapia de Pareja en Intervención en familias, pp. 105–106 (1989)Google Scholar
  62. 62.
    Locke, H.J., Wallace, K.M.: Short marital-adjustment and prediction tests: their reliability and validity. Marriage Fam. Living 21, 251–255 (1959)CrossRefGoogle Scholar
  63. 63.
    Rodríguez-Muñoz, M.F., Vallejo Slocker, L., Olivares Crespo, M.E., Izquierdo Méndez, N., Soto, C., Le, H.-N.: Propiedades psicométricas del Postpartum Depression Predictors Iinventory-revised-versión prenatal en una muestra española de mujeres embarazadas. TT - [Psychometric properties of postpartum depression predictors inventory-revised- prenatal version in a sample of Spanish pregnant women]. Rev. Esp. Salud. Publica 91, e1–e8 (2017)Google Scholar
  64. 64.
    Beck, C., Records, K., Rice, M.: Further development of the postpartum depression predictors inventory-revised. J. Obstet. Gynecol. Neonatal Nurs. 35, 735–745 (2006)CrossRefGoogle Scholar
  65. 65.
    Villarreal, R., Blozis, S.A., Widaman, K.F.: Factorial invariance of a pan-hispanic familism scale. Hisp. J. Behav. Sci. 27, 409–425 (2005)CrossRefGoogle Scholar
  66. 66.
    Lane, T.S., Armin, J., Gordon, J.S.: Online recruitment methods for web-based and mobile health studies: a review of the literature. J. Med. Internet Res. 17, e183 (2015)CrossRefGoogle Scholar
  67. 67.
    Logsdon, M.C., Foltz, M.P., Stein, B., Usui, W., Josephson, A.: Adapting and testing telephone-based depression care management intervention for adolescent mothers. Arch. Womens Ment. Health 13, 307–317 (2010)CrossRefGoogle Scholar
  68. 68.
    Baker-Ericzén, M.J., Connelly, C.D., Hazen, A.L., Dueñas, C., Landsverk, J.A., Horwitz, S.M.: A collaborative care telemedicine intervention to overcome treatment barriers for Latina women with depression during the perinatal period. Fam. Syst. Health 30, 224–240 (2012)CrossRefGoogle Scholar
  69. 69.
    Fernández, M.: Herramienta metodológica para la evaluación de contenidos digitales para las gestantes. Interv. Eval. Matronas Hoy 3, 14–25 (2015)Google Scholar
  70. 70.
    Maloni, J.A., Przeworski, A., Damato, E.G.: Web recruitment and internet use and preferences reported by women with postpartum depression after pregnancy complications. Arch. Psychiatr. Nurs. 27, 90–95 (2013)CrossRefGoogle Scholar
  71. 71.
    Hantsoo, L., Podcasy, J., Sammel, M., Epperson, C.N., Kim, D.R.: Pregnancy and the acceptability of computer-based versus traditional mental health treatments. J. Womens Health (Larchmt) 26, 1106–1113 (2017)CrossRefGoogle Scholar
  72. 72.
    Kim, H.G., Geppert, J., Quan, T., Bracha, Y., Lupo, V., Cutts, D.B.: Screening for postpartum depression among low-income mothers using an interactive voice response system. Matern. Child Health J. 16, 921–928 (2012)CrossRefGoogle Scholar
  73. 73.
    Miller, L., Shade, M., Vasireddy, V.: Beyond screening: assessment of perinatal depression in a perinatal care setting. Arch. Womens Ment. Health 12, 329–334 (2009)CrossRefGoogle Scholar
  74. 74.
    Kingston, D., et al.: Study protocol for a randomized, controlled, superiority trial comparing the clinical and cost-effectiveness of integrated online mental health assessment-referral-care in pregnancy to usual prenatal care on prenatal and postnatal mental health and infant. Trials 15 (2014)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Verónica Martínez-Borba
    • 1
    Email author
  • Carlos Suso-Ribera
    • 1
  • Jorge Osma
    • 2
    • 3
  1. 1.Universitat Jaume ICastellón de la PlanaSpain
  2. 2.Universidad de ZaragozaTeruelSpain
  3. 3.Instituto de Investigación Sanitaria de AragónZaragozaSpain

Personalised recommendations