Skip to main content

Population Dynamics of Browsing and Grazing Ungulates in the Anthropocene

  • Chapter
  • First Online:
The Ecology of Browsing and Grazing II

Part of the book series: Ecological Studies ((ECOLSTUD,volume 239))

Abstract

In this Chapter, we describe patterns of ungulate population dynamics, intrinsic and extrinsic causal factors underlying population growth, and consequences of variation in these causal factors in the face of anthropogenic change. We group ungulates as grazers and browsers, and review how each main functional feeding group copes with spatial and temporal variability of forage availability. Densities of browsers and grazers are highly variable in space and time, with the highest densities (top 10%) realized within specific body mass ranges. Among browsers, highest densities are usually found in smaller-bodied species (range: 20–233 kg, median: 45 kg), whereas highest densities for grazers are realized in larger species and within a wider body mass range (17–325 kg, median: 137.5 kg). A literature review of demographic processes (births, deaths, and movements) governing population dynamics suggests that direct effects of environmental variation on demographic rates, cohort effects, and indirect effects of perturbations on the age structure, all influence population growth rates. Additionally, the role of direct versus indirect effects can depend on life history strategies. Which specific demographic processes are most important to population growth rate are largely context dependent. Population growth rates of browsing and grazing ungulates are strongly influenced by environmental variation, with primary productivity—which varies strongly in space and time—the fundamental factor influencing the carrying capacity of a given area. Competition, direct and indirect effects of predation, and diseases can lower population densities below their resource-determined potential. Resource availability, predation, diseases, and perturbations of the environment (e.g. drought, fire, and land use change) interact synergistically in their regulation of herbivore populations to create indirect-, additive-, reciprocal-, and interaction-modifying relationships. In particular, human-caused perturbations (land use and climate change, introduction of livestock, and direct exploitation) may directly or indirectly affect both “bottom up” and “top down” regulation. A qualitative threat review indicates that obligate grazers in sub-tropical regions may be particularly threatened given the scale and diversity of anthropogenic perturbations projected to be influential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albon SD, Coulson TN, Brown D, Guinness FE, Pemberton JM, Clutton-Brock TH (2000) Temporal changes in key factors and key age groups influencing the population dynamics of female red deer. J Anim Ecol 69(6):1099–1110

    Article  Google Scholar 

  • Arsenault R, Owen-Smith N (2002) Facilitation versus competition in grazing herbivore assemblages. Oikos 97(3):313–318

    Article  Google Scholar 

  • Bartsch A, Kumpula T, Forbes BC, Stammler F (2010) Detection of snow surface thawing and refreezing in the Eurasian Arctic with QuikSCAT: implications for reindeer herding. Ecol Appl 20(8):2346–2358

    Article  PubMed  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackburn TM, Gaston KJ (1999) The relationship between animal abundance and body size: a review of the mechanisms. Adv Ecol Res 28:181–210

    Article  Google Scholar 

  • Blackburn TM, Brown VK, Doube BM, Greenwood JD, Lawton JH, Stork N (1994) The relationship between abundance and body size in natural animal assemblages. J Anim Ecol 62:519–528

    Article  Google Scholar 

  • Bolger DT, Newmark WD, Morrison TA, Doak DF (2008) The need for integrative approaches to understand and conserve migratory ungulates. Ecol Lett 11(1):63–77

    PubMed  Google Scholar 

  • Bond WJ, Midgley GF (2000) A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob Change Biol 6:865–869

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2004) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    Article  Google Scholar 

  • Bonenfant C et al (2009) Emprirical evidence of density-dependence in populations of large herbivores. Adv Ecol Res 41:313–357

    Article  Google Scholar 

  • Bourbeau-Lemieux A, Festa-Bianchet M, Gaillard J-M, Pelletier F (2011) Predator-driven component Allee effects in a wild ungulate. Ecol Lett 14:358–363

    Article  PubMed  Google Scholar 

  • Boyce MS, Haridas CV, Lee CT, The NCEAS Stochastic Demography Working Group (2006) Demography in an increasingly variable world. Trends Ecol Evol 21:141–148

    Article  PubMed  Google Scholar 

  • Burbaitė L, Csányi S (2009) Roe deer population and harvest changes in Europe. Est J Ecol 58(3):169–180

    Article  Google Scholar 

  • Burgman M, Ferson S, Akçakaya HR (1993) Risk assessment in conservation biology. Chapman and Hall, London

    Google Scholar 

  • Buuveibaatar B et al (2016) Human activities negatively impact distribution of ungulates in the Mongolian Gobi. Biol Conserv 203:168–175

    Article  Google Scholar 

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

    Google Scholar 

  • Chaneton EJ, Bonsall M (2000) Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos 88:380–394

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365

    Article  PubMed  Google Scholar 

  • Clutton-Brock TH, Coulson T (2002) Comparative ungulate dynamics: the devil is in the detail. Philos Trans R Soc B 35:1285–1298

    Article  Google Scholar 

  • Coe MJ, Cumming DH, Phillipson J (1976) Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia 22(4):341–354

    Article  CAS  PubMed  Google Scholar 

  • Collins MM, Milner-Gulland EJJ, Macdonald EAA, Macdonald DWW (2011) Pleiotropy and charisma determine winners and losers in the REDD+ game: all biodiversity is not equal. Trop Conserv Sci 4(3):261–266

    Article  Google Scholar 

  • Côté SD, Rooney TP, Tremblay J-P, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147

    Article  Google Scholar 

  • Coulson T, Gaillard J-M, Festa-Bianchet M (2005) Decomposing the variation in population growth into contributions from multiple demographic rates. J Anim Ecol 74:789–801

    Article  Google Scholar 

  • Coulson T, Tuljapurkar S, Childs DZ (2010) Using evolutionary demography to link life-history, quantitative genetics and population ecology. J Anim Ecol 79(6):1226–1240

    Article  PubMed  PubMed Central  Google Scholar 

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14(10):406–410

    Article  Google Scholar 

  • Creel S, Christianson D, Liley S, Winnie JA Jr (2007) Predation risk affects reproductive physiology and demography of elk. Science 315:960

    Article  CAS  PubMed  Google Scholar 

  • Damuth J (1981) Population-density and body size in mammals. Nature 290:699–700

    Article  Google Scholar 

  • de Boer WF, Prins HHT (1990) Large herbivores that strive mightily but eat and drink as friends. Oecologia 82:264–274

    Article  PubMed  Google Scholar 

  • de Waal C et al (2011) Scale of nutrient patchiness mediates resource partitioning between trees and grasses in a semi-arid savanna. J Ecol 99:1124–1133

    Article  Google Scholar 

  • Devine AP, McDonald RA, Quaife T, Maclean IMD (2017) Determinants of woody encroachment and cover in African savannas. Oecologia 183:939–951

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345(6195):401–406

    Article  CAS  PubMed  Google Scholar 

  • Duncan C, Chauvenet ALM, McRae LM, Pettorelli N (2012) Predicting the future impact of droughts on ungulate populations in arid and semi-arid environments. PLoS One 7(12):e51490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • East R (1984) Rainfall, soil nutrient status and biomass of large African savanna mammals. Afr J Ecol 22(4):245–270

    Article  Google Scholar 

  • Estes JA, Brashares JS, Power ME (2013) Predicting and detecting reciprocity between indirect ecological interactions and evolution. Am Nat 181:S76–S99

    Article  PubMed  Google Scholar 

  • Fritz H, Duncan P (1994) On the carrying capacity for large ungulates of African savanna ecosystems. Proc R Soc B 256:77–82

    Article  CAS  PubMed  Google Scholar 

  • Fryxell JM, Wilmshurst JF, Sinclair ARE, Haydon DT, Holt RD, Abrams PA (2005) Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol Lett 8(3):328–335

    Article  Google Scholar 

  • Gagnon M, Chew AE (2000) Dietary preferences in extant African Bovidae. J Mammal 81:490–511

    Article  Google Scholar 

  • Gaillard J-M, Festa-Bianchet M, Yoccoz NG (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol Evol 13(2):58–63

    Article  CAS  PubMed  Google Scholar 

  • Gaillard J-M, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393

    Article  Google Scholar 

  • Gamelon M, Gimenez O, Baubet E, Coulson T, Tuljapurkar S, Gaillard J-M (2014) Influence of life-history tactics on transient dynamics: a comparative analysis across mammalian populations. Am Nat 184:673–683

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamelon M, Gaillard J-M, Gimenez O, Coulson T, Tuljapurkar S, Baubet E (2016) Linking demographic responses and life-history from longitudinal data in mammals. Oikos 125(3):395–404

    Article  Google Scholar 

  • Gamelon M, Foccardi S, Baubet E, Brandt S, Franzetti B, Rochni F, Venner S, Sæther B-E, Gaillard J-M (2017) Reproductive allocation in pulsed resource environments: a comparative study in two populations of wild boar. Oecologia 183(4):1065–1076

    Article  PubMed  Google Scholar 

  • Gaynor KM, Hojnowski CE, Carter NH, Brashares JS (2018) The influence of human disturbance on wildlife nocturnality. Science 360(6394):1232–1235

    Article  CAS  PubMed  Google Scholar 

  • Gerland P et al (2014) World population stabilization unlikely this century. Science 346:234–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilpin ME, Hanski I (1991) Metapopulation dynamics: empirical and theoretical investigations. Linnaean Society of London and Academic Press, London

    Google Scholar 

  • Goheen JR et al (2018) Conservation lessons from large-mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments. Ann N Y Acad Sci 1429(1):31–49

    Article  PubMed  Google Scholar 

  • Goodman D (1987) The demography of chance extinction. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, pp 11–34

    Chapter  Google Scholar 

  • Gordon IJ (2018) Review: Livestock production increasingly influences wildlife across the globe. Animal 12(S2):s372–s382

    Article  CAS  PubMed  Google Scholar 

  • Gordon IJ, Prins HHT (2008) Grazers and browsers in a changing world: conclusions. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Ecological studies, vol 195. Springer, Berlin, pp 309–321

    Google Scholar 

  • Hagen R, Heurich M, Storch I, Hanewinkel M, Kramer-Schadt S (2017) Linking annual variations of roe deer bag records to large-scale winter conditions: spatio-temporal development in Europe between 1961 and 2013. Eur J Wildl Res 63:97

    Article  Google Scholar 

  • Hamel S, Gaillard J, Festa-Bianchet M, Côté S (2009) Individual quality, early-life conditions, and reproductive success in contrasted populations of large herbivores. Ecology 90:1981–1995

    Article  PubMed  Google Scholar 

  • Hansen MC et al (2013) High resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    Article  CAS  PubMed  Google Scholar 

  • Haridas CV, Tuljapurkar S, Coulson T (2009) Estimating stochastic elasticities directly from longitudinal data. Ecol Lett 12(8):806–812

    Article  CAS  PubMed  Google Scholar 

  • Hempson GP, Illius AW, Hendricks HH, Bond WJ, Vetter S (2015) Herbivore population regulation and resource heterogeneity in a stochastic environment. Ecology 96(8):2170–2180

    Article  CAS  PubMed  Google Scholar 

  • Hempson GP, Archibald S, Bond WJ (2017) The consequences of replacing wildlife with livestock in Africa. Sci Rep 7:17196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess GR (1996) Linking extinction to connectivity and habitat destruction in metapopulation models. Am Nat 148:226–236

    Article  Google Scholar 

  • Hobbs NT, Gordon IJ (2010) How does landscape heterogeneity shape dynamics of large herbivore populations? In: Owen-Smith N (ed) Dynamics of large herbivore populations in changing environments. Wiley-Blackwell, Hoboken, NJ, pp 141–164

    Chapter  Google Scholar 

  • Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach-structure and feeding habits of East African ruminants. Mammalia 36(2):226–240

    Article  Google Scholar 

  • Holdo R et al (2009) A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol 7(9):e1000210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopcraft JGC, Olff H, Sinclair ARE (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol Evol 25(2):119–128

    Article  PubMed  Google Scholar 

  • Hopcraft JGC, Holdo RM, Mwangomo E, Mduma SAR, Thirgood SJ, Borner M, Fryxell JM, Olff H, Sinclair ARE (2015) Why are wildebeest the most abundant herbivore in the Serengeti ecosystem? In: Sinclair ARE, Metzger KL, Mduma SAR, Fryxell JM (eds) Serengeti IV: sustaining biodiversity in a coupled human-natural system. The University of Chicago Press, Chicago, pp 125–174

    Google Scholar 

  • Illius AW, O’Connor TG (1999) On the relevance of nonequilibrium concepts to arid and semiarid grazing systems. Ecol Appl 9:798–813

    Article  Google Scholar 

  • Jackson T, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25(3):153–160

    Article  PubMed  Google Scholar 

  • Jacobson AR, Provenzale A, Hardenberg A, Bassano B, Festa-Bianchet M (2004) Climate forcing and density dependence in a mountain ungulate population. Ecology 85(6):1598–1610

    Article  Google Scholar 

  • Jędrzejewska B, Jędrzejewski W, Bunevich AN, Miikowski L, Krasiński ZA (1997) Factors shaping population densities and increase rates of ungulates in Bialowieża primeval forest (Poland and Belarus) in the 19th and 20th centuries. Acta Theriol 42(4):399–451

    Article  Google Scholar 

  • Jenouvrier S, Holland M, Stroeve J, Serreze M, Barbraud C, Weimerskirch H, Caswell H (2014) Projected continent wide declines of the emperor penguin under climate change. Nat Clim Chang 4:715–718

    Article  Google Scholar 

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71

    Article  Google Scholar 

  • Johnson HE, Mills LS, Stephenson TR, Wehausen JD (2010) Population-specific vital rates contributions influence management of an endangered ungulate. Ecol Appl 20(6):1753–1765

    Article  PubMed  Google Scholar 

  • Keesing F et al (2018) Consequences of integrating livestock and wildlife in an African savanna. Nat Sust 1:566–573

    Article  Google Scholar 

  • Kery M, Schaub M (2012) Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic, Boston, MA

    Google Scholar 

  • Kiffner C, Nagar S, Kollmar C, Kioko J (2016) Wildlife species richness and densities in wildlife corridors of Northern Tanzania. J Nat Conserv 34:82–92

    Article  Google Scholar 

  • Kiffner C, Rheault H, Miller E, Scheetz T, Enriquez V, Swafford R, Kioko J, Prins HHT (2017) Long-term population dynamics in a multi-species assemblage of large herbivores in East Africa. Ecosphere 8(12):e02027

    Article  Google Scholar 

  • Kock RA et al (2018) Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv 4:eaao2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koons DN, Iles DT, Schaub M, Caswell H (2016) A life history perspective on the demographic drivers of structured population dynamics in changing environments. Ecol Lett 19:1023–1031

    Article  PubMed  Google Scholar 

  • Koons DN, Arnold TW, Schaub M (2017) Understanding the demographic drivers of realized population growth rates. Ecol Appl 27(7):2102–2115

    Article  PubMed  Google Scholar 

  • Kuemmerle T et al (2011) Cost-effectiveness of strategies to establish a European bison metapopulation in the Carpathians. J Appl Ecol 48(2):317–329

    Article  Google Scholar 

  • Lack D (1966) Population studies of birds. Oxford University Press, Oxford

    Google Scholar 

  • LaManna JA, Martin TE (2016) Costs of fear: behavioral and life-history responses to risk and their demographic consequences vary across species. Ecol Lett 19:403–413

    Article  PubMed  Google Scholar 

  • Langevelde F et al (2003) Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84(2):337–350

    Article  Google Scholar 

  • Lee DE (2018) Evaluating conservation effectiveness in a Tanzanian community wildlife management area. J Wildl Manag 82(8):1767–1774

    Article  Google Scholar 

  • Lee DE, Bolger DT (2017) Movements and source-sink dynamics among subpopulations of giraffe. Popul Ecol 59:157–168

    Article  Google Scholar 

  • Lee DE, Bond ML, Kissui BM, Kiwango YA, Bolger DT (2016a) Spatial variation in giraffe demography: a test of 2 paradigms. J Mammal 97:1015–1025

    Article  Google Scholar 

  • Lee DE, Kissui BM, Kiwango YA, Bond ML (2016b) Migratory herds of wildebeests and zebras indirectly affect calf survival of giraffes. Ecol Evol 6(23):8402–8411

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehman CP, Rota CT, Raithel JD, Millspaugh JJ (2018) Pumas affect elk dynamics in absence of other large carnivores. J Wildl Manag 82(2):344–353

    Article  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Lindsey PA et al (2013) The bushmeat trade in African savannas: impacts, drivers, and possible solutions. Biol Conserv 160:80–96

    Article  Google Scholar 

  • Loison A, Langvatn R, Solberg EJ (1999) Body mass and winter mortality in red deer calves: disentangling sex and climate effects. Ecography 22(1):20–30

    Article  Google Scholar 

  • Maldonado-Chaparro AA, Blumstein DT, Armitage KB, Childs DZ (2018) Transient LTRE analysis reveals the demographic and trait-mediated processes that buffer population growth. Ecol Lett 21:1693–1703

    Article  PubMed  PubMed Central  Google Scholar 

  • Massei G et al (2015) Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci 71(4):492–500

    Article  CAS  PubMed  Google Scholar 

  • Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography 28(3):403–416

    Article  Google Scholar 

  • Meissner HH, Pieterse E, Potgieter JHJ (1996) Seasonal food selection and intake by male impala Aepyceros melampus in two habitats. S Afr J Wildl Res 26(2):56–63

    Google Scholar 

  • Melis C et al (2009) Predation has a greater impact in less productive environments: variation in roe deer, Capreolus capreolus, population density across Europe. Glob Ecol Biogeogr 18(6):724–734

    Article  Google Scholar 

  • Merkle JA et al (2016) Large herbivores surf waves of green-up during spring. Proc R Soc B 283:20160456

    Article  PubMed  PubMed Central  Google Scholar 

  • Milner JM, Nilsen EB, Andreassen HP (2006) Demographic side effects of selective hunting in ungulates and carnivores. Conserv Biol 21(1):36–47

    Article  Google Scholar 

  • Morris WF, Doak DF (2002) Quantitative conservation biology. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Morrison TA, Holdo RM, Anderson TM (2016a) Elephant damage, not fire or rainfall, explains mortality of overstorey trees in Serengeti. J Ecol 104(2):409–418

    Article  Google Scholar 

  • Morrison TA, Link WA, Newmark WD, Foley CAH, Bolger DT (2016b) Tarangire revisited: consequences of declining connectivity in a tropical ungulate population. Biol Conserv 197:53–60

    Article  Google Scholar 

  • Morrison TA, Holdo RM, Rugemalila DM, Nzunda M, Anderson TM (2018) Grass competition overwhelms effects of herbivores and precipitation on early tree establishment in Serengeti. J Ecol. https://doi.org/10.1111/1365-2745.13010

  • Müller DWH et al (2013) Assessing the Jarman – Bell principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp Biochem Physiol A 164:129–140

    Article  CAS  Google Scholar 

  • Murphy BP, Bowman DMJS (2012) What controls the distribution of tropical forest and savanna? Ecol Lett 15:748–758

    Article  PubMed  Google Scholar 

  • Norby RJ et al (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci U S A 102(50):18052–18056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor TG, Haines LM, Snyman HA (2001) Influence of precipitation and species composition on phytomass of a semi-arid grassland. J Ecol 89:850–860

    Article  Google Scholar 

  • Odadi WO, Karachi MK, Abdulrazak SA, Young TP (2011a) African wild ungulates compete with or facilitate cattle depending on season. Science 333:1753–1755

    Article  CAS  PubMed  Google Scholar 

  • Odadi WO, Jain M, van Wieren SE, Prins HHT, Rubenstein DI (2011b) Facilitation between Bovids and Equids in an African Savanna. Evol Ecol Res 13:237–252

    Google Scholar 

  • Ogutu JO, Owen-Smith N (2003) ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol Lett 6(5):412–419

    Article  Google Scholar 

  • Ogutu JO, Piepho H-P, Dublin HT, Bhola N, Reid RS (2008) El Niño-Southern Oscillation, rainfall, temperature, and Normalized Difference Vegetation Index fluctuations in the Mara-Serengeti ecosystem. Afr J Ecol 46(2):132–143

    Article  Google Scholar 

  • Olff H, Ritchie ME, Prins HHT (2002) Global environmental controls of diversity in large herbivores. Nature 415:901–904

    CAS  PubMed  Google Scholar 

  • Olson KA et al (2011) Death by a thousand huts? Effects of household presence on density and distribution of Mongolian gazelles. Conserv Lett 4(4):304–312

    Article  Google Scholar 

  • Olson KA et al (2014) Survival probabilities of adult Mongolian gazelles. J Wildl Manag 78(1):35–41

    Article  Google Scholar 

  • Owen-Smith N (1990) Demography of a large herbivore, the greater kudu Tragelaphus strepsiceros, in relation to rainfall. J Anim Ecol 59:893–913

    Article  Google Scholar 

  • Owen-Smith N (2004) Functional heterogeneity in resources within landscapes and herbivore population dynamics. Landsc Ecol 19:761–771

    Article  Google Scholar 

  • Owen-Smith N (2008) The comparative population dynamics of browsing and grazing ungulates. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Springer, Berlin, pp 149–177

    Chapter  Google Scholar 

  • Owen-Smith N, Mason DR (2005) Comparative changes in adult vs. juvenile affecting population trends of African ungulates. J Anim Ecol 74:762–773

    Article  Google Scholar 

  • Parker KL, Barboza PS, Gillingham MP (2009) Nutrition integrates environmental responses of ungulates. Funct Ecol 23:57–69

    Article  Google Scholar 

  • Peers MJ, Majchrzak YN, Neilson E, Lamb CT, Hämäläinen A, Haines JA, Garland L, Doran-Myers D, Broadley K, Boonstra R, Boutin S (2018) Quantifying fear effects on prey demography in nature. Ecology 99(8):1716–1723

    Article  PubMed  Google Scholar 

  • Pellew RA (1983) The giraffe and its food resource in the Serengeti. I. Composition, biomass and production of available browse. Afr J Ecol 21:241–267

    Article  Google Scholar 

  • Perreira HM, Navaro LM (2015) Rewilding European landscapes. Springer, Heidelberg

    Book  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pettorelli N, Bro-Jørgensen J, Durant SM, Blackburn T, Carbone C (2009) Energy availability and density estimates in African ungulates. Am Nat 173(5):698–704

    Article  PubMed  Google Scholar 

  • Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80:1322–1339

    Article  Google Scholar 

  • Prins HHT (1988) Plant phenology patterns in Lake Manyara National Park, Tanzania. J Biogeogr 15:465–480

    Article  Google Scholar 

  • Prins HHT (1992) The pastoral road to extinction: competition between wildlife and traditional pastoralism in East Africa. Environ Conserv 19:117–123

    Article  Google Scholar 

  • Prins HHT, Gordon IJ (2008) Introduction: grazers and browsers in a changing world. In: Gordon I, Prins HHT (eds) The ecology of browsing and grazing. Ecological studies, vol 195. Springer, Berlin, pp 1–20

    Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org

    Google Scholar 

  • Ramirez JI, Jansen PA, Poorter L (2018) Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: a semi-quantitative review. For Ecol Manag 424:406–419

    Article  Google Scholar 

  • Ratnam J, Bond WJ, Fensham RJ, Hoffmann WA, Archibald S, Lehman CER, Anderson MT, Higgins SI, Sankaran M (2011) When is a ‘forest’ a savanna, and why does it matter? Glob Ecol Biogeogr 20:653–660

    Article  Google Scholar 

  • Richard E, Gaillard JM, Saïd S, Hamann JL, Klein F (2010) High red deer density depresses body mass of roe deer fawns. Oecologia 163(1):91–97

    Article  PubMed  Google Scholar 

  • Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GIH, Levi T, Lindsey PA, MacDonald DW, Malhi Y, Painter LE, Sandom CJ, Terborgh J, Van Valkenburgh B (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103

    Article  PubMed  PubMed Central  Google Scholar 

  • Ripple W, Wolf C, Newsome TM, Hoffmann M, Wirsing AJ, McCauley DJ (2017) Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc Natl Acad Sci U S A 114(40):10678–10683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins CT (1993) Wildlife feeding and nutrition. Academic, New York

    Google Scholar 

  • Roques KG, O’Connor TG, Watkinson AR (2001) Dynamics of shrub encroachment in an African savanna. Relative influences of fire, herbivory, rainfall and density dependence. J Appl Ecol 38(2):268–180

    Article  Google Scholar 

  • Rutherford MC (1984) Relative allocation and seasonal phasing of growth of woody plant components in a South African savanna. Prog Biometerol 3:200–221

    Google Scholar 

  • Sala OE et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Sankaran M et al (2005) Determinants of woody cover in African savannas. Nature 438(8):846–849

    Article  CAS  PubMed  Google Scholar 

  • Seeber P, Ndlovu HT, Duncan P, Ganswindt A (2012) Grazing behavior of the giraffe in Hwange National Park, Zimbabwe. Afr J Ecol 50(2):247–250

    Article  Google Scholar 

  • Silva M, Brimacombe M, Downing JA (2001) Effects of body mass, climate, geography, and census area on population density of terrestrial mammals. Glob Ecol Biogeogr 10:469–485

    Article  Google Scholar 

  • Sinclair ARE (1977) The African buffalo: a study of resource limitation of populations. University of Chicago Press, Chicago

    Google Scholar 

  • Sinclair ARE (1979) The eruption of the ruminants. In: Sinclair ARE, Norton-Griffiths M (eds) Serengeti: dynamics of an ecosystem. Chicago University Press, Chicago, pp 82–103

    Google Scholar 

  • Sinclair ARE (2003) Mammal population regulation, keystone processes and ecosystem dynamics. Philos Trans R Soc B 358:1729–1240

    Article  CAS  Google Scholar 

  • Sinclair ARE et al (2018) Predicting and assessing progress in the restoration of ecosystems. Conserv Lett 11(2):e12390

    Article  Google Scholar 

  • Sinclair ARE, Krebs CJ (2002) Complex numerical responses to top-down and bottom-up processes in vertebrate populations. Philos Trans R Soc B 357:1221–1231

    Article  CAS  Google Scholar 

  • Sinclair ARE, Norton-Griffiths M (1982) Does competition or facilitation regulate migrant ungulate populations in the Serengeti? A test of hypotheses. Oecologia 53(3):364–369

    Article  CAS  PubMed  Google Scholar 

  • Smit IPJ, Archibald S (2019) Herbivore culling influences spatio-temporal patterns of fire in a semi-arid savanna. J Appl Ecol 56(3):711–721. https://doi.org/10.1111/1365-2664.13312

    Article  Google Scholar 

  • Smit IPJ, Prins HHT (2015) Predicting the effects of woody encroachment on mammal communities, grazing biomass and fire frequency in African savannas. PLoS One 10(9):e0137857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spear D, Chown SL (2009) Non-indigenous ungulates as a threat to biodiversity. J Zool 279(1):1–17

    Article  Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum CS et al (2015) How far to go? Determinants of migration distance in land mammals. Ecol Lett 18(6):545–552

    Article  PubMed  Google Scholar 

  • Tucker MA et al (2018) Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359(6375):466–469

    Article  CAS  PubMed  Google Scholar 

  • Tuljapurkar S (1982) Population dynamics in variable environments. III evolutionary dynamics of r-selection. Theor Popul Biol 21:141–165

    Article  Google Scholar 

  • van Beest FM, Mysterud A, Loe LE, Milner JM (2010) Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivore. J Anim Ecol 79(4):910–922

    PubMed  Google Scholar 

  • van de Koppel J et al (2002) Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Am Nat 159(2):209–218

    Article  PubMed  Google Scholar 

  • Verheyden-Tixier H, Renaud P-C, Morellet N, Jamot J, Besle J-M, Dumont B (2008) Selection for nutrients by red deer hinds feeding on a mixed forest edge. Oecologia 156:715–726

    Article  PubMed  Google Scholar 

  • Waltert M, Meyer B, Kiffner C (2009) Habitat availability, hunting or poaching: what affects distribution and density of large mammals in western Tanzanian woodlands? Afr J Ecol 47:737–746

    Article  Google Scholar 

  • Wang G et al (2006) Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87(1):95–102

    Article  PubMed  Google Scholar 

  • Wang G et al (2009) Density dependence in northern ungulates: interactions with predation and resources. Popul Ecol 51(1):123

    Article  Google Scholar 

  • Wegge P, Storaas T (2009) Sampling tiger ungulate prey by the distance method: lessons learned in Bardia National Park, Nepal. Anim Conserv 12:78–84

    Article  Google Scholar 

  • Wegge P, Shresta AK, Moe SR (2006) Dry season diets of sympatric ungulates in lowland Nepal: competition and facilitation in alluvial tall grasslands. Ecol Res 21:698–706

    Article  Google Scholar 

  • White EP, Ernest SKM, Kerkoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330

    Article  PubMed  Google Scholar 

  • Wilkie DS, Bennett EL, Peres CA, Cunningham AA (2011) The empty forest revisited. Ann N Y Acad Sci 1223:120–128

    Article  PubMed  Google Scholar 

  • Wisdom MJ, Mills LS, Doak DF (2000) Life stage simulation analysis: estimating vital rate effects on population growth for conservation. Ecology 81:628–641

    Article  Google Scholar 

  • Wittmer HU, Sinclair ARE, McLellan BN (2005) The role of predation in the decline and extirpation of woodland caribou. Oecologia 144:257–267

    Article  PubMed  Google Scholar 

  • Wood SN, Pya N, Saefken B (2016) Smoothing parameter and model selection for general smooth models (with discussion). J Am Stat Assoc 111:1548–1575

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Herbert Prins and Iain Gordon for the invitation to write this Chapter and for very constructive feedback on this Chapter. We thank Monica Bond for constructive discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kiffner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiffner, C., Lee, D.E. (2019). Population Dynamics of Browsing and Grazing Ungulates in the Anthropocene. In: Gordon, I., Prins, H. (eds) The Ecology of Browsing and Grazing II. Ecological Studies, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-030-25865-8_6

Download citation

Publish with us

Policies and ethics