Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

By definition, sonication or more accurately ultrasonication is the application of vibrational energy in the ultrasonic frequency range of (20 kHz–1 MHz) to efficiently mix aqueous solutions and suspensions [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pollet BG (ed) (2012) Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution. Wiley. ISBN 978–0-470-97424-7

    Google Scholar 

  2. Pollet BG (2014) Let’s not ignore the effect of ultrasound on the preparation of fuel cell materials. Electrocatalysis 5(4):330

    Article  CAS  Google Scholar 

  3. Moriguchi N (1934) The influence of supersonic waves on chemical phenomena III: the influence on the concentration polarisation. J Chem Soc Jpn 55:349

    Google Scholar 

  4. Pollet BG, Hihn J-Y (2011) Sonoelectrochemistry: from theory to applications. In: Chen D, Sharma SK, Mudhoo A (eds) Handbook on applications of ultrasound: sonochemistry for sustainability. CRC Press

    Google Scholar 

  5. Pollet BG (2008) A short introduction to sonoelectrochemistry. Electrochem Soc Interface Fall 3(27):41

    Article  CAS  Google Scholar 

  6. Pollet BG, Hihn J-Y, Doche M-L, Lorimer JP, Mandroyan A, Mason TJ (2007) Transport limited currents close to an ultrasonic horn. J Electrochem Soc 154(10):E131

    Article  CAS  Google Scholar 

  7. Schmid G, Ehret L (1937) Beeinflussung der Metallpassivität durch Ultraschall. Berichte der Bunsengesellschaft für physikalische Chemie 43(6):408

    CAS  Google Scholar 

  8. Schmid G, Ehret L (1937) Beeinflussung der Elektrolytischen Abscheidungspotentiale von Gasen durch Ultraschall. Ber Bunsenges Phys Chem 43(8):597

    CAS  Google Scholar 

  9. Yeager E, Hovorka F (1953) Ultrasonic waves and electrochemistry I: a survey of the electrochemical applications of ultrasonic waves. J Acoust Soc Am 25(3):443

    Article  Google Scholar 

  10. Kolb J, Nyborg W (1956) Small-scale acoustic streaming in liquids. J Acoust Soc Am 28:1237

    Article  Google Scholar 

  11. Penn R, Yeager E, Hovorka F (1959) Effect of ultrasonic waves on concentration gradients. J Acoust Soc Am 31:1372

    Article  Google Scholar 

  12. Bard A (1963) High speed controlled potential coulometry. Anal Chem 35:1125

    Article  CAS  Google Scholar 

  13. Google Scholar search performed on 08 June 2019—keyword: Sonoelectrochemistry

    Google Scholar 

  14. Mason TJ, Lorimer JP, Walton DJ (1990) Sonoelectrochemistry. Ultrasonics 28:333

    Article  CAS  Google Scholar 

  15. Yegnaraman V, Bharathi S (1992) Sonoelectrochemistry—an emerging area. Bull Electrochem 8:84

    CAS  Google Scholar 

  16. Walton DJ, Phull SS (1996) Sonoelectrochemistry. Adv Sonochem 4:205

    Article  CAS  Google Scholar 

  17. Compton RG, Eklund JC, Marken F (1997) Sonoelectrochemical processes: a review. Electroanalysis 9:509

    Article  CAS  Google Scholar 

  18. Pollet BG, Phull SS (2001) Sonoelectrochemistry—theory principles, and applications. Recent Res Dev Electrochem 4:55–78

    Google Scholar 

  19. Walton DJ (2002) Sonoelectrochemistry—the application of ultrasound to electrochemical systems. Arkovic 3:198–218

    Google Scholar 

  20. Brett C (2008) Sonoelectrochemistry. In: Arnau Vives A (ed) Piezoelectric transducer and applications, Chap. 15, pp 399–411. Springer, Berlin

    Google Scholar 

  21. Klima J (2010) Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement. Ultrasonics. https://doi.org/10.1016/j.ultras.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  22. González-García J, Esclapez MD, Bonete P, Hernández YV, Garretón LG, Sáez V (2010) Current topics on sonoelectrochemistry. Ultrasonics 50:318–322

    Article  PubMed  Google Scholar 

  23. Walton DJ, Mason TJ (1998) Organic sonoelectrochemistry. Synth Org Sonochem 4:263–300

    Google Scholar 

  24. Cognet P, Wilhem A-M, Delmas H, Lyazidi HA, Fabre P-L (2000) Ultrasound in organic electrosynthesis. Ultrason Sonochem 7:163–167

    Article  CAS  PubMed  Google Scholar 

  25. Wadhawan JD, Marken F, Compton RG (2001) Biphasic sonoelectrochemistry: a review. Pure Appl Chem 73:1947–1955

    Article  CAS  Google Scholar 

  26. Banks CE, Compton RG (2003) Ultrasonically enhanced voltammetric analysis and applications: an overview. Electroanalysis 15:329–346

    Article  CAS  Google Scholar 

  27. Sáez V, Mason TJ (2009) Sonoelectrochemical synthesis of nanoparticles. Molecules 14:4284–4299

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pollet BG (2010) The use of ultrasound for the fabrication of fuel cell materials. Int J Hydrogen Energy 35(21):11986

    Article  CAS  Google Scholar 

  29. Islam MdH, Burheim OS, Pollet BG (2019) Sonochemical and sonochemical production of hydrogen. Ultras Sonochem 51:533

    Article  CAS  Google Scholar 

  30. Walton DJ, Chyla A, Lorimer JP, Mason TJ (1990) Sonochemical enhancement of phenylacetate electrooxidation. Syn Commun 20:1843

    Article  CAS  Google Scholar 

  31. Cataldo F (1992) Effects of ultrasound on the yield of hydrogen and chlorine during electrolysis of aqueous solutions of NaCl or HCl. J Electroanal Chem 332(1–2):325

    Article  CAS  Google Scholar 

  32. Reisse J, Francois H, Vandercammen J, Fabre O, Kirsh-De Mesmaeker A, Maershalk C, Delplancke JL (1994) Sonoelectrochemistry in aqueous electrolyte: a new type of sonoelectroreactor. Electrochim Acta 39:37

    Article  CAS  Google Scholar 

  33. Hagan RSC, Coury LA (1994) Comparison of hydrodynamic voltammetry implemented by sonication to a rotating disk electrode. Anal Chem 66:399

    Article  CAS  Google Scholar 

  34. Compton RG, Eklund JC, Page SD, Sanders GHW, Booth J (1994) Voltammetry in the presence of ultrasound. Sonovoltammetry and surface effects. J Phys Chem 98:12410

    Article  CAS  Google Scholar 

  35. Klima J, Bernard C, Degrand C (1994) Sonoelectrochemistry: effects of ultrasound on voltammetric measurements at a solid electrode. J Electroanal Chem 367:297

    Article  CAS  Google Scholar 

  36. Lorimer JP, Pollet B, Phull SS, Mason TJ, Walton DJ, Geissler U (1996) The effect of ultrasonic frequency and intensity upon limiting currents at rotating disc and stationary electrodes. Electrochim Acta 41:2737

    Article  CAS  Google Scholar 

  37. Compton RG, Hardcastle JL, del Campo J (2003) Sonoelectrochemistry, physical aspects. In: Bard-Stratmann (ed) Encyclopedia of electrochemistry; In: Unwin P (ed) Instrumentation and electrochemical chemistry, vol 3, pp 312–327

    Google Scholar 

  38. Pollet BG (2019) Does power ultrasound affect heterogeneous electron transfer kinetics? Ultras Sonochem 52:6

    Article  CAS  Google Scholar 

  39. Birkin PR, Silva-Martinez S (1996) A study of the effect of ultrasound on mass transport to a microelectrode. J Electroanal Chem 416:127

    Article  CAS  Google Scholar 

  40. Colarusso P, Serpone N (1996) Sonochemistry II.—effects of ultrasounds on homogeneous chemical reactions and in environmental detoxification. Res Chem Intermed 22(1):61

    Article  CAS  Google Scholar 

  41. Luche J-L (1994) The effect of ultrasound on heterogeneous systems. Ultrason Sonochem 1(2):S111

    Article  CAS  Google Scholar 

  42. Zhang H, Coury LA Jr (1993) Effects of high-intensity ultrasound on glassy carbon electrodes. Anal Chem 65:1552

    Article  CAS  Google Scholar 

  43. Madigan NA, Hagan CRS, Zhang H, Coury LA (1996) Sonochemical stripping voltammetry. Ultrason Sonochem 6:S239

    Article  Google Scholar 

  44. Marken F, Eklund JC, Compton RG (1995) Voltammetry in the presence of ultrasound: can ultrasound modify heterogeneous electron transfer kinetics? J Electroanal Chem 395(1–2):335

    Article  Google Scholar 

  45. Birkin PR, Silva-Martinez S (1997) Determination of heterogeneous electron transfer kinetics in the presence of ultrasound at microelectrodes employing sampled voltammetry. Anal Chem 69:2055

    Article  CAS  PubMed  Google Scholar 

  46. Huck H (1987) Die messung der ultraschall-diffusion an einer elektrode und ihre praktische anwendung. Ber Bunsenges Phys Chem 91:648

    Article  CAS  Google Scholar 

  47. Costa C, Hihn J-Y, Rebetez M, Doche M-L, Bisel I, Moisy P (2008) Transport-limited current and microsonoreactor characterization at 3 low frequencies in the presence of water, acetonitrile and imidazolium-based ionic liquids. Phys Chem Chem Phys 10:2149

    Article  CAS  PubMed  Google Scholar 

  48. Pollet BG, Hihn J-Y, Mason TJ (2008) Sono-electrodeposition (20 and 850 kHz) of copper in aqueous and deep eutectic solvents. Electrochim Acta 53:4248

    Article  CAS  Google Scholar 

  49. Walker R (1993) The effect of ultrasound on electrodeposition and electroplating. In: Mason TJ (ed) Advances in sonochemistry, vol 3. JAI Press, Cirencester

    Google Scholar 

  50. Prasad R, Vasudevan P, Seshadri SK (1993) Trans Indian Metall 46(4):247

    Google Scholar 

  51. Prasad R, Vasudevan P, Seshadri SK (1994) Indian J Eng Mater Sci 1(3):178

    Google Scholar 

  52. Eberson L, Utley JHP (1982) In: Baizer MM, Lund H (eds) Organic electrochemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  53. Torii S (1985) Electroorganic syntheses, methods and applications; Part I: oxidations, vol 15 aus der Reihe: Monographs in modern chemistry, Kodansha Ltd., Tokyo und VCh, Weinheim 1985. 338 Seiten, Preis: DM 138

    Google Scholar 

  54. Vassiliev YB, Grinberg VA (1991) Adsorption kinetics of electrode processes and the mechanism of Kolbe electrosynthesis: Part I. Adsorption of carboxylic acids and the nature of the particles chemisorbed on platinum electrodes. J Electroanal Chem 283:359–378

    Article  Google Scholar 

  55. Et Taouil A, Lallemand F, Hihn J-Y, Melot JM, Blondeau-Patissier V, Lakard B (2011) Doping properties of PEDOT films electrosynthesized under high frequency ultrasound irradiation. Ultrason Sonochem 18(1): 140–148

    Article  CAS  PubMed  Google Scholar 

  56. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55

    Article  CAS  PubMed  Google Scholar 

  57. Rashwan SS, Dincer I, Mohany A, Pollet BG (2019) The Sono-Hydro-Gen process (ultrasound induced hydrogen production): challenges and opportunities. Int J Hydrogen Energy 44(29):14500

    Article  CAS  Google Scholar 

  58. Pollet BG (2019) The use of power ultrasound for the production of PEMFC and PEMWE catalysts and low-Pt loading and high-performing electrodes. Catalysts 9(3):246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno G. Pollet .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pollet, B.G., Ashokkumar, M. (2019). Short Introduction to Sonoelectrochemistry. In: Introduction to Ultrasound, Sonochemistry and Sonoelectrochemistry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-25862-7_2

Download citation

Publish with us

Policies and ethics