Skip to main content

Fundamental and Applied Aspects of Ultrasonics and Sonochemistry

  • Chapter
  • First Online:
Introduction to Ultrasound, Sonochemistry and Sonoelectrochemistry

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

The interaction between ultrasound and bubbles in a liquid generates acoustic cavitation, the growth and collapse of microbubbles. Acoustic cavitation generates strong physical forces and highly reactive radicals, which can be used for initiating chemical reactions and processing of various materials that include food, nanomaterials, etc. This chapter provides an overview of the fundamental aspects of acoustic cavitation and selected applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thrush A, Martin K, Hoskins PR (eds) (2010) Diagnostic ultrasound. Cambridge University Press, UK

    Google Scholar 

  2. Gallego-Juarez JA, Graff KF (eds) (2017) Power ultrasonics: applications of high-intensity ultrasound. Elsevier Science and Technology, UK

    Google Scholar 

  3. Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) (2016) Handbook of ultrasonics and sonochemistry, vol 1 and 2. Springer Reference, Singapore

    Google Scholar 

  4. Chen D, Sharma SK, Mudhoo A (eds) (2012) Handbook on applications of ultrasound: sonochemistry for sustainability. CRC Press, USA

    Google Scholar 

  5. Feng H, Weiss J, Barbosa-Cánovas G (eds) (2011) Ultrasound technologies for food and bioprocessing. Springer, New York

    Google Scholar 

  6. Povey MJW, Mason TJ (1998) Ultrasound in food processing. Blackie Academic, London

    Google Scholar 

  7. Feng H, Barbosa-Cánovas GV, Weiss J (2011) Ultrasound technologies for food and bioprocessing. Springer, New York

    Book  Google Scholar 

  8. Mason TJ (ed) (1999) Advances in sonochemistry, vol 5. Elsevier

    Google Scholar 

  9. Adam MI, Dobiás P, Eisner A, Ventura K (2009) Extraction of antioxidants from plants using ultrasonic methods and their antioxidant capacity. J Sep Sci 32:288–294

    Article  CAS  Google Scholar 

  10. Mason TJ (1988) Sonochemistry. Oxford Chemistry Premiers

    Google Scholar 

  11. Safari A, Akdogan EK (eds) (2008) Piezoelectric and acoustic materials for transducer applications. Springer

    Google Scholar 

  12. Ashokkumar M, Mason T (2007) Sonochemistry, Kirk-Othmer encyclopedia of chemical technology. Wiley, USA

    Google Scholar 

  13. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dubl Phil Mag 34:94–98

    Article  Google Scholar 

  14. An Y (2012) Nonlinear bubble dynamics of cavitation. Phys Rev E 85:016305

    Article  Google Scholar 

  15. Yasui K (1999) Single-bubble and multibubble sonoluminescence. Phys Rev Lett 83:4297

    Article  CAS  Google Scholar 

  16. Plesset M (1949) The dynamics of cavitation bubbles. J Appl Mech 16:277–282

    Google Scholar 

  17. Brenner MP, Hilgenfeldt S, Lohse D (2002) Single bubble sonoluminescence. Rev Mod Phys 74:425

    Article  CAS  Google Scholar 

  18. Crum L (1984) Acoustic cavitation series: part five rectified diffusion. Ultrasonics 22:215–223

    Article  CAS  Google Scholar 

  19. Lee J, Kentish SE, Ashokkumar M (2005) Effect of surfactants on the rate of growth of an air bubble by rectified diffusion. J Phys Chem B 109:14595–14598

    Article  CAS  Google Scholar 

  20. Leong T, Wu S, Kentish S, Ashokkumar M (2010) Growth of bubbles by rectified diffusion in aqueous surfactant solutions. J Phys Chem C 114:20141–20145

    Article  CAS  Google Scholar 

  21. Leighton T (1994) The acoustic bubble. Academic Press, London

    Google Scholar 

  22. Flannigan DJ, Suslick KS (2012) Temperature nonequilibration during single-bubble sonoluminescence. J Phys Chem Lett 3:2401–2404

    Article  CAS  Google Scholar 

  23. Pflieger R, Ouerhani T, Belmonte T, Niketenko SI (2017) Use of NH (A3Π–X3Σ−) sonoluminescence for diagnostics of nonequilibrium plasma produced by multibubble cavitation. Phys Chem Chem Phys 19:26272–26279

    Article  CAS  Google Scholar 

  24. Hart EJ, Fischer C-H, Henglein A (1990) Sonolysis of hydrocarbons in aqueous solution. Int J Radiat Appl Instrum C, Radiat Phys Chem 36:511–516

    Article  CAS  Google Scholar 

  25. Tauber A, Mark G, Schuchmann H-P, von Sonntag C (1999) Sonolysis of tert-butyl alcohol in aqueous solution. J Chem Soc Perkin Trans 2:1129–1136

    Google Scholar 

  26. Mišík V, Riesz P (1996) EPR study of free radicals induced by ultrasound in organic liquids II. Probing the temperatures of cavitation regions. Ultrason Sonochem 3:25–37

    Article  Google Scholar 

  27. Ciawi E, Rae J, Ashokkumar M, Grieser F (2006) Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. J Phys Chem B 110:13656–13660

    Article  CAS  Google Scholar 

  28. Rae J, Ashokkumar M, Eulaerts O, von Sonntag C, Reisse J, Grieser F (2005) Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Ultrason Sonochem 12:325–329

    Article  CAS  Google Scholar 

  29. Ciawi E, Ashokkumar M, Grieser F (2006) On the limitations of the methyl radical recombination method for acoustic bubble temperature measurements in aqueous solutions. J Phys Chem B 110:9779–9781

    Article  CAS  Google Scholar 

  30. Ashokkumar M, Grieser F (2005) A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. J Am Chem Soc 127:5326–5327

    Article  CAS  Google Scholar 

  31. Suslick KS, Hammerton DA, Cline RE (1986) Sonochemical hot spot. J Am Chem Soc 108:5641–5642

    Article  CAS  Google Scholar 

  32. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Ann Rev Mater Sci 29:295–326

    Article  CAS  Google Scholar 

  33. Ohayon E, Gedanken A (2010) The application of ultrasound radiation of the synthesis of nanocrystalline metal oxide in a non-aqueous solvent. Ultrason Sonochem 17:173–178

    Article  CAS  Google Scholar 

  34. Ashokkumar M (2008) Sonochemical synthesis of inorganic nanoparticles. In: Cozzoli PD (ed) Advanced wet-chemical synthetic approaches to inorganic nanostructures, Chap. 4. Transworld Research Network, pp 107–131

    Google Scholar 

  35. Mason TJ, Peters D (2002) Practical sonochemistry, power ultrasound uses and applications, 2nd edn. Ellis Horwood Publishers, Chichester

    Book  Google Scholar 

  36. Neppolian B, Doronila A, Grieser F, Ashokkumar M (2009) Simple and efficient sonochemical method for the oxidation of arsenic(III) to arsenic(V). Environ Sci Technol 43:6793–6798

    Article  CAS  Google Scholar 

  37. Okitsu K, Sharyo K, Nishimura R (2009) One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir 25:7786–7779

    Article  CAS  Google Scholar 

  38. Babu SG, Ashokkumar M, Neppolian B (2016) The role of ultrasound on advanced oxidation processes. In: Sonochemistry: from basic principles to innovative applications. Topics Curr Chem 374(Article number 75)

    Google Scholar 

  39. Petrier C, Francony A (1997) Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrason Sonochem 4:295–300

    Article  CAS  Google Scholar 

  40. Gedanken A (2008) Preparation and properties of proteinaceous microspheres made sonochemically. Chem A Eur J 14:3840–3853

    Article  CAS  Google Scholar 

  41. Ashokkumar M, Grieser F (2007) The effect of surface active solutes on bubbles in an acoustic field. PhysChemChemPhys 9:5631–5643

    CAS  Google Scholar 

  42. Cavalieri F, Colombo E, Nicolai E, Rosato N, Ashokkumar M (2016) Sono-assembly of nanostructures via tyrosine–tyrosine coupling reactions at the interface of acoustic cavitation bubbles. Mat. Horizons 3:563–567

    Article  CAS  Google Scholar 

  43. Bhangu SK, Ashokkumar M, Cavalieri F (2017) A simple one-step ultrasonic route to synthesize antioxidant molecules and fluorescent nanoparticles from phenol and phenol-like molecules. ACS Sustain Chem Eng 5:6081–6089

    Article  CAS  Google Scholar 

  44. Zhu H, Cavalieri F, Ashokkumar M (2018) Ultrasound-assisted synthesis of cross-linked poly(ethylene glycol) nanostructures with hydrophobic core and hydrophilic shell. Macromol Chem Phys 219(1–5):1800353

    Article  Google Scholar 

  45. Young FR (1999) Cavitation. World Scientific

    Google Scholar 

  46. Young FR (2005) Sonoluminescence. CRC Press, NY

    Google Scholar 

  47. Hatanaka SI, Mitome H, Yasui K, Hayashi S (2002) Single-bubble sonochemi-luminescence in aqueous luminol solutions. J Am Chem Soc 124:10250–10251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno G. Pollet .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pollet, B.G., Ashokkumar, M. (2019). Fundamental and Applied Aspects of Ultrasonics and Sonochemistry. In: Introduction to Ultrasound, Sonochemistry and Sonoelectrochemistry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-25862-7_1

Download citation

Publish with us

Policies and ethics