Skip to main content

Ion Acceleration: TNSA and Beyond

  • Conference paper
  • First Online:
Laser-Driven Sources of High Energy Particles and Radiation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 231))

Abstract

This paper reviews experimental progress in laser-driven ion acceleration as well as discussing some of the current and foreseen applications employing laser-accelerated beams of ions. While sheath acceleration processes initiated by high-intensity irradiation of solid foils (the so-called target Normal Sheath Acceleration, TNSA) have now been studied for two decades, novel processes which can accelerate ions from the bulk of the irradiated target have emerged more recently. We will summarize the basic physics behind all these mechanisms, as well as briefly reporting current experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.L. Clark et al., Phys. Rev. Lett. 84, 670 (2000)

    Article  ADS  Google Scholar 

  2. A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000)

    Article  ADS  Google Scholar 

  3. R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  4. S.C. Wilks et al., Phys. Plasmas 8, 542 (2001)

    Article  ADS  Google Scholar 

  5. P. Mora, Phys. Rev. Lett. 90, 185002 (2003)

    Article  ADS  Google Scholar 

  6. M. Borghesi et al., Fusion Sci. Tech. 49, 412 (2006)

    Article  Google Scholar 

  7. H. Daido, M. Nishiuchi, A.S. Pirozkhov, Rep. Prog. Phys. 75, 056401 (2012)

    Article  ADS  Google Scholar 

  8. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)

    Article  ADS  Google Scholar 

  9. W.L. Kruer, K. Estabrook, Phys. Fluids 28, 430 (1985)

    Article  ADS  Google Scholar 

  10. A.J. Mackinnon et al., Phys. Rev. Lett. 88, 215006 (2002)

    Article  ADS  Google Scholar 

  11. T. Ceccotti et al., Phys. Rev. Lett. 99, 185002 (2007)

    Article  ADS  Google Scholar 

  12. M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002)

    Article  ADS  Google Scholar 

  13. K. Ogura et al., Opt. Lett. 37, 2868 (2012)

    Article  ADS  Google Scholar 

  14. T. Cowan et al., Phys. Rev. Lett. 92, 204801 (2004)

    Article  ADS  Google Scholar 

  15. A. Macchi et al., Plasma Phys. Control. Fusion 55, 124020 (2013)

    Article  ADS  Google Scholar 

  16. K. Zeil et al., New J. Phys. 12, 045015 (2010)

    Article  ADS  Google Scholar 

  17. K.A. Flippo et al., Rev. Sci. Instr. 79, 10E534 (2008)

    Article  Google Scholar 

  18. J. Fuchs et al., Nat. Phys. 2, 48 (2006)

    Article  Google Scholar 

  19. L. Robson et al., Nat. Phys. 3, 58 (2007)

    Article  Google Scholar 

  20. P. Mora, Phys. Rev. E 72, 056401 (2005)

    Article  ADS  Google Scholar 

  21. M. Passoni, M. Lontano, Phys. Rev. Lett. 101, 115001 (2008)

    Article  ADS  Google Scholar 

  22. M. Passoni, L. Bertagna, A. Zani, New J. Phys. 12, 045012 (2010)

    Article  ADS  Google Scholar 

  23. S. Buffechoux et al., Phys. Rev. Lett. 105, 015005 (2010)

    Article  ADS  Google Scholar 

  24. D. Margarone et al., Phys. Rev. Lett. 109, 234801 (2012)

    Article  ADS  Google Scholar 

  25. P.K. Patel et al., Phys. Rev. Lett. 91, 125004 (2003)

    Article  ADS  Google Scholar 

  26. S. Kar et al., Phys. Rev. Lett. 100, 105004 (2011)

    Article  ADS  Google Scholar 

  27. T. Toncian et al., Science 312, 410 (2006)

    Article  ADS  Google Scholar 

  28. S. Kar et al., Nat. Comm. 7, 10792 (2016)

    Article  ADS  Google Scholar 

  29. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum Press, 1984)

    Google Scholar 

  30. S.C. Wilks et al., Phys. Rev. Lett. 69, 1385 (1992)

    Article  ADS  Google Scholar 

  31. A.P.L. Robinson et al., Plasma Phys. Control Fusion 51, 024004 (2009)

    Article  ADS  Google Scholar 

  32. A. Macchi et al., Phys. Rev. Lett. 94, 165003 (2005)

    Article  ADS  Google Scholar 

  33. C.A.J. Palmer et al., Phys. Rev. Lett. 106, 014801 (2011)

    Article  ADS  Google Scholar 

  34. A.P.L. Robinson et al., Plasma Phys. Control. Fusion 54, 115001 (2012)

    Article  ADS  Google Scholar 

  35. L. Silva et al., Phys. Rev. Lett. 92, 015002 (2004)

    Article  ADS  Google Scholar 

  36. D. Haberberger et al., Nat. Phys. 8, 95 (2012)

    Article  Google Scholar 

  37. T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  38. A.P.L. Robinson et al., New J. Phys. 10, 013021 (2008)

    Article  ADS  Google Scholar 

  39. B. Qiao et al., Phys. Rev. Lett. 102, 145002 (2009)

    Article  ADS  Google Scholar 

  40. A. Macchi, S. Veghini, F. Pegoraro, Phys. Rev. Lett. 103, 085003 (2009)

    Article  ADS  Google Scholar 

  41. B. Qiao et al., Phys. Rev. Lett. 108, 115002 (2012)

    Article  ADS  Google Scholar 

  42. S. Kar et al., Phys. Rev. Lett. 109, 185006 (2012)

    Article  ADS  Google Scholar 

  43. C. Scullion et al., Phys. Rev. Lett. 119, 054801 (2017)

    Article  ADS  Google Scholar 

  44. A. Higginson et al., Nat. Comm. 9, 724 (2018)

    Article  ADS  Google Scholar 

  45. A. Henig et al., Phys. Rev. Lett. 103, 045002 (2009)

    Article  ADS  Google Scholar 

  46. D. Jung et al., New J. Phys. 15, 023007 (2013)

    Article  ADS  Google Scholar 

  47. D. Jung et al., Phys. Plasmas 20, 083103 (2013)

    Article  ADS  Google Scholar 

  48. B. Gonzalez-Izquierdo et al., Nat. Comm. 7, 12891 (2016)

    Article  ADS  Google Scholar 

  49. L. Yin et al., Phys. Rev. Lett. 107, 045003 (2011)

    Article  ADS  Google Scholar 

  50. B. Gonzalez-Izquierdo et al., Nat. Phys. 12, 505 (2016)

    Article  Google Scholar 

  51. H. Powell et al., New J. Phys. 17, 103033 (2015)

    Article  ADS  Google Scholar 

  52. M. Borghesi et al., Phys. Rev. Lett. 92, 055003 (2004)

    Article  ADS  Google Scholar 

  53. M. Borghesi et al., Phys. Plasmas 9, 2214 (2002)

    Article  ADS  Google Scholar 

  54. A.J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)

    Article  ADS  Google Scholar 

  55. A. Ravasio et al., Phys. Rev. E 82, 016407 (2010)

    Article  ADS  Google Scholar 

  56. J.A. Cobble et al., J. App. Phys. 92, 1775 (2002)

    Article  ADS  Google Scholar 

  57. A.Y. Faenov et al., App. Phys. Lett. 95, 101107 (2009)

    Article  ADS  Google Scholar 

  58. C.I.I. Choi et al., J. Opt. Soc. Korea 13, 28 (2009)

    Article  Google Scholar 

  59. G. Sarri et al., New J. Phys. 12, 045006 (2010)

    Article  ADS  Google Scholar 

  60. A.J. Mackinnon et al., Rev. Sci. Instrum. 75, 3531 (2004)

    Article  ADS  Google Scholar 

  61. L. Romagnani et al., Phys. Rev. Lett. 95, 195001 (2005)

    Article  ADS  Google Scholar 

  62. K. Quinn et al., Phys. Rev. Lett. 102, 194801 (2009)

    Article  ADS  Google Scholar 

  63. L. Lancia et al., Phys. Rev. Lett. 113, 235001 (2014)

    Article  ADS  Google Scholar 

  64. J.J. Santos et al., New J. Phys. 17, 083051 (2017)

    Article  Google Scholar 

  65. W. Fox et al., Phys. Rev. Lett. 111, 225002 (2013)

    Article  ADS  Google Scholar 

  66. H. Ahmed et al., Phys. Rev. Lett. 110, 205001 (2013)

    Article  ADS  Google Scholar 

  67. H. Ahmed et al., ApJ Lett. 834, L21 (2017)

    Article  ADS  Google Scholar 

  68. M. Koenig et al., Plasma Phys. Control. Fusion 47, B441 (2005)

    Article  Google Scholar 

  69. A. Mancic et al., High Energy Density Phys. 6, 21 (2010)

    Article  ADS  Google Scholar 

  70. A. Pelka et al., Phys. Rev. Lett. 105, 265701 (2010)

    Article  ADS  Google Scholar 

  71. A. McKelvey et al., Sci. Rep. 7, 7015 (2017)

    Article  ADS  Google Scholar 

  72. B. Dromey et al., Nat. Comm. 7, 10642 (2016)

    Article  ADS  Google Scholar 

  73. L. Senje et al., App. Phys. Lett. 110, 104012 (2017)

    Article  Google Scholar 

  74. A. Yogo et al., App. Phys. Lett. 98, 053701 (2011)

    Article  ADS  Google Scholar 

  75. S.D. Kraft et al., New J. Phys. 12, 085003 (2010)

    Article  ADS  Google Scholar 

  76. D. Doria et al., AIP Adv. 2, 011209 (2012)

    Article  ADS  Google Scholar 

  77. J. Bin et al., App. Phys. Lett. 101, 243701 (2012)

    Article  ADS  Google Scholar 

  78. F. Hanton et al., Sci. Rep. 9, 4471 (2019)

    Article  ADS  Google Scholar 

  79. K. Zeil et al., App. Phys. B 110, 437 (2013)

    Article  ADS  Google Scholar 

  80. S. Rashke et al., Sci. Rep. 6, 32441 (2016)

    Article  ADS  Google Scholar 

  81. L. Manti et al., JINST 12, C03084 (2017)

    Article  Google Scholar 

  82. V. Favaudon et al., Sci. Transl. Med. 6, 245ra93 (2014)

    Google Scholar 

  83. A. Yogo, Biological responses triggered by laser-driven ion beams, in Laser-Driven Particle Acceleration Towards Radiobiology and Medicine (Springer, 2016)

    Google Scholar 

  84. https://www.ptcog.ch/index.php/facilities-in-operation

  85. W.D. Newhauser, R. Zhang, Phys. Med. Biol. 60, R155 (2015)

    Article  ADS  Google Scholar 

  86. D. Schardt, T. Elsasser, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)

    Article  ADS  Google Scholar 

  87. S.V. Bulanov, V. Khoroshkov, Plasma Phys. Rep. 28, 453 (2002)

    Article  ADS  Google Scholar 

  88. E. Fourkal et al., Med. Phys. 29, 2788 (2002)

    Article  Google Scholar 

  89. V. Malka et al., Med. Phys. 31, 1587 (2004)

    Article  Google Scholar 

  90. K.W.D. Ledingham, P.R. Bolton, N. Shikazono, C.-M. Ma, Appl. Sci. 4, 402 (2014)

    Article  Google Scholar 

  91. U. Masood et al., Phys. Med. Biol. 62, 55331 (2017)

    Article  Google Scholar 

  92. S. Schell, J.J. Wilkens, Med. Phys. 37, 5330 (2010)

    Article  Google Scholar 

  93. K.M. Hoffman, U. Masood, J. Pawelke, J.J. Wilkens, Med. Phys. 42, 5120 (2015)

    Article  Google Scholar 

  94. D. Margarone et al., Quantum Beam Sci. 2, 8 (2018)

    Article  ADS  Google Scholar 

  95. C. Obcemea (in this volume, 2018)

    Google Scholar 

  96. K.W.D. Ledingham, P. McKenna, R.P. Singhal, Science 300, 1107 (2003)

    Article  ADS  Google Scholar 

  97. F. Negoita et al., Rom. Rep. Phys. 68, S37 (2016)

    Google Scholar 

  98. J.M. Yang et al., J. App. Phys. 96, 6912 (2004)

    Article  ADS  Google Scholar 

  99. L. Willingale et al., Phys. Plasmas 18, 083106 (2011)

    Article  ADS  Google Scholar 

  100. C. Zulick et al., App. Phys. Lett. 102, 124101 (2013)

    Article  ADS  Google Scholar 

  101. M. Roth et al., Phys. Rev. Lett. 110, 044802 (2013)

    Article  ADS  Google Scholar 

  102. S. Kar et al., New J. Phys. 18, 053002 (2016)

    Article  ADS  Google Scholar 

  103. M. Roth, Neutron generation, in Applications of Laser-Driven Particle Acceleration (CRC Press, 2018)

    Google Scholar 

  104. S.R. Mirfayzi et al., App. Phys. Lett. 111, 044101 (2017)

    Article  ADS  Google Scholar 

  105. M. Roth et al., Phys. Rev. Lett. 86, 436 (2001)

    Article  ADS  Google Scholar 

  106. M. Tabak et al., Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  107. M. Temporal, J.J. Honrubia, S. Atzeni, Phys. Plasmas 9, 3098 (2002)

    Article  ADS  Google Scholar 

  108. J.J. Honrubia, M. Murakami, Phys. Plasmas 22, 012703 (2015)

    Article  ADS  Google Scholar 

  109. J.C. Fernandez et al., Nucl. Fus. 54, 054006 (2014)

    Article  ADS  Google Scholar 

  110. P. Mckenna et al., Phil. Trans. R. Soc. A, 364, 711 (2006)

    Google Scholar 

  111. F. Wagner et al., Phys. Rev. Lett. 116, 205002 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from EPSRC (grants EP/K022415/1 and EP/J500094/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Borghesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borghesi, M. (2019). Ion Acceleration: TNSA and Beyond. In: Gizzi, L., Assmann, R., Koester, P., Giulietti, A. (eds) Laser-Driven Sources of High Energy Particles and Radiation. Springer Proceedings in Physics, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-030-25850-4_7

Download citation

Publish with us

Policies and ethics