Skip to main content

Fundamentals and Applications of Hybrid LWFA-PWFA

  • Conference paper
  • First Online:
  • 767 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 231))

Abstract

Fundamental similarities and differences between laser-driven plasma wakefield acceleration (LWFA)  and particle-driven plasma wakefield acceleration (PWFA)  are discussed. The complementary features enable the conception and development of novel hybrid plasma accelerators, which allow previously not accessible compact solutions for high quality electron bunch generation and arising applications. Very high energy gains can be realized by electron beam drivers even in single stages because PWFA is practically dephasing-free and not diffraction-limited. These electron driver beams for PWFA in turn can be produced in compact LWFA stages. In various hybrid approaches, these PWFA systems can be spiked with ionizing laser pulses to realize tunable and high-quality electron sources via optical density downramp injection (also known as plasma torch)  or plasma photocathodes (also known as Trojan Horse) and via wakefield-induced injection (also known as WII). These hybrids can act as beam energy, brightness and quality transformers, and partially have built-in stabilizing features. They thus offer compact pathways towards beams with unprecedented emittance and brightness, which may have transformative impact for light sources and photon science applications. Furthermore, they allow the study of PWFA-specific challenges in compact setups in addition to large linac-based facilities, such as fundamental beam–plasma interaction physics, to develop novel diagnostics, and to develop contributions such as ultralow emittance test beams or other building blocks and schemes which support future plasma-based collider concepts.

This paper is a reprint of the paper in Appl. Sci. 2019, 9(13), 2626; https://www.mdpi.com/2076-3417/9/13/2626/htm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Hidding, G.G. Manahan, O. Karger, A. Knetsch, G. Wittig, D.A. Jaroszynski, Z.M. Sheng, Y. Xi, A. Deng, J.B. Rosenzweig et al., Ultrahigh brightness bunches from hybrid plasma accelerators as drivers of 5th generation light sources. J. Phys. B 47, 234010 (2014)

    Article  ADS  Google Scholar 

  2. C. Nieter, J.R. Cary, VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 448–473 (2004). https://doi.org/10.1016/j.jcp.2003.11.004

    Article  ADS  MATH  Google Scholar 

  3. N. Barov, J.B. Rosenzweig, M.C. Thompson, R.B. Yoder, Energy loss of a high-charge bunched electron beam in plasma: analysis. Phys. Rev. ST Accel. Beams 7, 061301 (2004). https://doi.org/10.1103/PhysRevSTAB.7.061301

    Article  ADS  Google Scholar 

  4. B. Hidding, T. Koenigstein, J. Osterholz, S. Karsch, O. Willi, G. Pretzler, Monoenergetic energy doubling in a hybrid laser-plasma wakefield accelerator. Phys. Rev. Lett. 104, 195002 (2010). https://doi.org/10.1103/PhysRevLett.104.195002

    Article  ADS  Google Scholar 

  5. F.S. Tsung, R. Narang, W.B. Mori, C. Joshi, R.A. Fonseca, L.O. Silva, Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. Phys. Rev. Lett. 93, 185002 (2004). https://doi.org/10.1103/PhysRevLett.93.185002

    Article  ADS  Google Scholar 

  6. K.H. Pae, I.W. Choi, J. Lee, Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration. Phys. Plasmas 17, 123104 (2010). https://doi.org/10.1063/1.3522757

    Article  ADS  Google Scholar 

  7. P.E. Masson-Laborde, M.Z. Mo, A. Ali, S. Fourmaux, P. Lassonde, J.C. Kieffer, W. Rozmus, D. Teychenné, R. Fedosejevs, Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration. Phys. Plasmas 21, 123113 (2014). https://doi.org/10.1063/1.4903851

    Article  ADS  Google Scholar 

  8. V.E. Balakin, A.V. Novokhatsky, V.P. Smirnov, Vlepp: transverse beam dynamics. Conf. Proc. C830811, 119–120 (1983)

    Google Scholar 

  9. T.J. Mehrling, R.A. Fonseca, A. Martinez de la Ossa, J. Vieira, Mitigation of the hose instability in plasma-wakefield accelerators. Phys. Rev. Lett. 118, 174801 (2017). https://doi.org/10.1103/PhysRevLett.118.174801

  10. S.M. Wiggins, R.C. Issac, G.H. Welsh, E. Brunetti, R.P. Shanks, M.P. Anania, S. Cipiccia, G.G. Manahan, C. Aniculaesei, B. Ersfeld et al., High quality electron beams from a laser wakefield accelerator. Plasma Phys. Control. Fusion 52, 124032–124039 (2010). https://doi.org/10.1088/0741-3335/52/12/124032

    Article  ADS  Google Scholar 

  11. O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismail, X. Davoine, G. Gallot, J.P. Goddet, E. Lefebvre, V. Malka et al., Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nat. Phys. 7, 219–222 (2011)

    Article  Google Scholar 

  12. J. Couperus, R. Pausch, A. Köhler, O. Zarini, J. Krämer, M. Garten, A. Huebl, R. Gebhardt, U. Helbig, S. Bock et al., Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun. 8, 487 (2017)

    Article  ADS  Google Scholar 

  13. H.C. Wu, T. Tajima, D. Habs, A.W. Chao, J. Meyer-ter Vehn, Collective deceleration: toward a compact beam dump. Phys. Rev. ST Accel. Beams 13, 101303 (2010). https://doi.org/10.1103/PhysRevSTAB.13.101303

    Article  ADS  Google Scholar 

  14. S. Chou, J. Xu, K. Khrennikov, D.E. Cardenas, J. Wenz, M. Heigoldt, L. Hofmann, L. Veisz, S. Karsch, Collective deceleration of laser-driven electron bunches. Phys. Rev. Lett. 117, 144801 (2016)

    Article  ADS  Google Scholar 

  15. S. Kuschel, D. Hollatz, T. Heinemann, O. Karger, M.B. Schwab, D. Ullmann, A. Knetsch, A. Seidel, C. Rödel, M. Yeung et al., Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch. Phys. Rev. Accel. Beams 19, 071301 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.071301

    Article  ADS  Google Scholar 

  16. T. Heinemann, A. Knetsch, O. Zarini, A. Martinez de la Ossa, T. Kurz, O. Kononenko, U. Schramm, A. Köhler, B. Hidding, A. Irman, et al., Investigating the key parameters of a staged laser- and particle driven plasma wakefield accelerator experiment, in Proceedings of the 8th International Particle Accelerator Conference (IPAC 2017) (Copenhagen, Denmark, 2017), p. TUPIK010. https://doi.org/10.18429/JACOW-IPAC2017-TUPIK010

  17. G. Manahan, A. Habib, P. Scherkl, P. Delinikolas, A. Beaton, A. Knetsch, O. Karger, G. Wittig, T. Heinemann, Z. Sheng et al., Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams. Nat. Commun. 8, 15705 (2017)

    Article  ADS  Google Scholar 

  18. M.F. Gilljohann, H. Ding, A. Döpp, J. Götzfried, S. Schindler, G. Schilling, S. Corde, A. Debus, T. Heinemann, B. Hidding et al., Direct observation of plasma waves and dynamics induced by laser-accelerated electron beams. Phys. Rev. X 9, 011046 (2019). https://doi.org/10.1103/PhysRevX.9.011046

    Article  Google Scholar 

  19. J. Ferri, S. Corde, A. Döpp, A. Lifschitz, A. Doche, C. Thaury, K. Ta Phuoc, B. Mahieu, I.A. Andriyash, V. Malka, et al., High-brilliance betatron \(\gamma \)-ray source powered by laser-accelerated electrons. Phys. Rev. Lett. 120, 254802 (2018). https://doi.org/10.1103/PhysRevLett.120.254802

  20. B. Hidding, G. Pretzler, D. Bruhwiler, J. Rosenzweig, Method for generating electron beams in a hybrid plasma accelerator. German Patent DE 10 2011 104 858.1 (2011)

    Google Scholar 

  21. B. Hidding, G. Pretzler, J.B. Rosenzweig, T. Königstein, D. Schiller, D.L. Bruhwiler, Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout. Phys. Rev. Lett. 108, 035001 (2012). https://doi.org/10.1103/PhysRevLett.108.035001

    Article  ADS  Google Scholar 

  22. A. Martinez de la Ossa, J. Grebenyuk, T. Mehrling, L. Schaper, J. Osterhoff, High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection. Phys. Rev. Lett. 111, 245003 (2013). https://doi.org/10.1103/PhysRevLett.111.245003

  23. G. Wittig, O. Karger, A. Knetsch, Y. Xi, A. Deng, J.B. Rosenzweig, D.L. Bruhwiler, J. Smith, G.G. Manahan, Z.M. Sheng et al., Optical plasma torch electron bunch generation in plasma wakefield accelerators. Phys. Rev. ST Accel. Beams 18, 081304 (2015). https://doi.org/10.1103/PhysRevSTAB.18.081304

    Article  ADS  Google Scholar 

  24. J. Wenz, K. Khrennikov, A. Döpp, M. Gilljohann, H. Ding, J. Goetzfried, S. Schindler, A. Buck, J. Xu, M. Heigoldt, et al., Tunable femtosecond electron and X-ray double-beams from a compact laser-driven accelerator (2018). arXiv:1804.05931

  25. H. Suk, N. Barov, J.B. Rosenzweig, E. Esarey, Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86, 1011–1014 (2001). https://doi.org/10.1103/PhysRevLett.86.1011

    Article  ADS  Google Scholar 

  26. G. Wittig, O.S. Karger, A. Knetsch, Y. Xi, A. Deng, J.B. Rosenzweig, D.L. Bruhwiler, J. Smith, Z.M. Sheng, D.A. Jaroszynski, et al., Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes. Nucl. Instrum. Methods Phys. Res. Sect. 829, 83–87 (2016). 2nd European Advanced Accelerator Concepts Workshop-EAAC 2015. https://doi.org/10.1016/j.nima.2016.02.027

    Article  ADS  Google Scholar 

  27. A. Martinez de la Ossa, Z. Hu, M.J.V. Streeter, T.J. Mehrling, O. Kononenko, B. Sheeran, J. Osterhoff, Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators. Phys. Rev. Accel. Beams 20, 091301 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.091301

  28. B. Hidding, J.B. Rosenzweig, Y. Xi, B. O’Shea, G. Andonian, D. Schiller, S. Barber, O. Williams, G. Pretzler, T. Königstein et al., Beyond injection: trojan horse underdense photocathode plasma wakefield acceleration. AIP Conf. Proc. 1507, 570–575 (2012). https://doi.org/10.1063/1.4773760

    Article  ADS  Google Scholar 

  29. G.G. Manahan, A. Deng, O. Karger, Y. Xi, A. Knetsch, M. Litos, G. Wittig, T. Heinemann, J. Smith, Z.M. Sheng et al., Hot spots and dark current in advanced plasma wakefield accelerators. Phys. Rev. Accel. Beams 19, 011303 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.011303

    Article  ADS  Google Scholar 

  30. C.B. Schroeder, J.L. Vay, E. Esarey, S.S. Bulanov, C. Benedetti, L.L. Yu, M. Chen, C.G.R. Geddes, W.P. Leemans, Thermal emittance from ionization-induced trapping in plasma accelerators. Phys. Rev. ST Accel. Beams 17, 101301 (2014). https://doi.org/10.1103/PhysRevSTAB.17.101301

    Article  ADS  Google Scholar 

  31. Y. Xi, B. Hidding, D. Bruhwiler, G. Pretzler, J.B. Rosenzweig, Hybrid modeling of relativistic underdense plasma photocathode injectors. Phys. Rev. ST Accel. Beams 16, 031303 (2013). https://doi.org/10.1103/PhysRevSTAB.16.031303

    Article  ADS  Google Scholar 

  32. D. Umstadter, J.K. Kim, E. Dodd, Method and apparatus for generating and accelerating ultrashort electron pulses. U.S. Patent 5,789,876 (1995)

    Google Scholar 

  33. D. Umstadter, J.K. Kim, E. Dodd, Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073–2076 (1996). https://doi.org/10.1103/PhysRevLett.76.2073

    Article  ADS  Google Scholar 

  34. L.L. Yu, E. Esarey, C. Schroeder, J.L. Vay, C. Benedetti, C. Geddes, M. Chen, W. Leemans, Two-color laser-ionization injection. Phys. Rev. Lett. 112, 125001 (2014). https://doi.org/10.1103/PhysRevLett.112.125001

    Article  ADS  Google Scholar 

  35. E. Oz, S. Deng, T. Katsouleas, P. Muggli, C.D. Barnes, I. Blumenfeld, F.J. Decker, P. Emma, M.J. Hogan, R. Ischebeck et al., Ionization-induced electron trapping in ultrarelativistic plasma wakes. Phys. Rev. Lett. 98, 084801 (2007). https://doi.org/10.1103/PhysRevLett.98.084801

    Article  ADS  Google Scholar 

  36. A. Martinez de la Ossa, T.J. Mehrling, L. Schaper, M.J.V. Streeter, J. Osterhoff, Wakefield-induced ionization injection in beam-driven plasma accelerators. Phys. Plasmas 22, 093107 (2015)

    Google Scholar 

  37. A.M. de la Ossa, T. Mehrling, J. Osterhoff, Intrinsic stabilization of the drive beam in plasma wakefield accelerators. Phys. Rev. Lett. 121, 064803 (2018)

    Article  ADS  Google Scholar 

  38. R. Fonseca, L. Silva, F. Tsung, V. Decyk, W. Lu, C. Ren, W. Mori, S. Deng, S. Lee, T. Katsouleas et al., OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. Lecture Notes in Computer Science (Springer, Berlin, 2002), pp. 342–351

    MATH  Google Scholar 

  39. N. Kirby, I. Blumenfeld, C.E. Clayton, F.J. Decker, M.J. Hogan, C. Huang, R. Ischebeck, R.H. Iverson, C. Joshi, T. Katsouleas et al., Transverse emittance and current of multi-GeV trapped electrons in a plasma wakefield accelerator. Phys. Rev. ST Accel. Beams 12, 051302 (2009)

    Article  ADS  Google Scholar 

  40. M. Tzoufras, W. Lu, F.S. Tsung, C. Huang, W.B. Mori, T. Katsouleas, J. Vieira, R.A. Fonseca, L.O. Silva, Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101, 145002 (2008). https://doi.org/10.1103/PhysRevLett.101.145002

    Article  ADS  Google Scholar 

  41. J. Couperus, R. Pausch, A. Köhler, O. Zarini, J. Krämer, M. Garten, A. Huebl, R. Gebhardt, U. Helbig, S. Bock et al., Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun. 8, 487 (2017). https://doi.org/10.1038/s41467-017-00592-7

    Article  ADS  Google Scholar 

Download references

Funding

This research was funded by H2020 EuPRAXIA (Grant No. 653782), ERC (Grant No. 715807), EPSRC (Grant No. EP/N028694/1), DFG (MAP EXC 158), DFG Emmy-Noether (B.H.), and used computational resources of the National Energy Research Scientific Computing Center, which is supported by DOE DE-AC02-05CH11231, and of Shaheen (Project k1191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Hidding .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hidding, B. et al. (2019). Fundamentals and Applications of Hybrid LWFA-PWFA. In: Gizzi, L., Assmann, R., Koester, P., Giulietti, A. (eds) Laser-Driven Sources of High Energy Particles and Radiation. Springer Proceedings in Physics, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-030-25850-4_5

Download citation

Publish with us

Policies and ethics