Skip to main content
  • 893 Accesses

Abstract

This chapter commences with an overview of the human cognitive architecture. It is proposed that our experience is stored in the representational system, and that this past experience influences our current behaviour. These processes, however, often operate at an implicit rather than an explicit level. At any given moment, our conscious awareness is limited, and our attention is drawn to threats and novel stimuli. In terms of the biological basis of mood, we go on to discuss the role of the limbic system in relation to anxiety and depression and consider the amygdala and hippocampus as key structures. These interact with higher cortical systems in the prefrontal lobes and anterior cingulate cortex, which interpret our experience and control our responses. The implications for therapy are discussed. The role of early trauma in relation to establishing vulnerability and later susceptibility to psychological distress is acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Spatial array or spatial field emphasizes that what is important is the spatial display at a given time, not the usual sensory modality underlying this display. (Blind people have a spatial array in their working memory.) Work plan emphasizes that the displayed content is subject to mental processing.

References

  • Abercrombie, H. C., Schaefer, S. M., Larson, C. L., Oakes, T. R., Lindgren, K. A., Holden, J. E., … Davidson, R. J. (1998). Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport, 9(14), 3301–3307.

    Article  Google Scholar 

  • Adolphs, R. (2008). Fear, faces, and the human amygdala. Current Opinion in Neurobiology,18(2), 166–172.

    Article  Google Scholar 

  • Adolphs, R., Tranel, D., Hamann, S., Young, A. W., Calder, A. J., Phelps, E. A., … Damasio, A. R. (1999). Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia, 37(10), 1111–1117.

    Article  Google Scholar 

  • Anderson, J. A. (1995). An introduction to neural networks. Cambridge: MIT Press.

    Book  Google Scholar 

  • Baars, B. J. (1994). A global workspace theory of conscious experience. In A. Revonsuo & M. Kamppinen (Eds.), Consciousness in philosophy and Cognitive neuroscience (pp. 149–171). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A. (1992). Working memory. Science,255(5044), 556–559.

    Article  Google Scholar 

  • Baddeley, A. (2001). The magic number and the episodic buffer. Behavioral and Brain Sciences,24(1), 117–118.

    Article  Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47–89). London: Academic Press.

    Google Scholar 

  • Bagozzi, R. P., & Pieters, R. (1998). Goal-directed emotions. Cognition and Emotion,12(1), 1–26.

    Article  Google Scholar 

  • Baxter, J. L., Saxena, S., Brody, A. L., Ackermann, R. F., Colgan, M., Schwartz, J. M., … Phelps, M. E. (1996, January). Brain mediation of obsessive-compulsive disorder symptoms: Evidence from functional brain imaging studies in the human and nonhuman primate. Seminars in Clinical Neuropsychiatry, 1(1), 32–47.

    Google Scholar 

  • Beauregard, M., Leroux, J. M., Bergman, S., Arzoumanian, Y., Beaudoin, G., Bourgouin, P., & Stip, E. (1998). The functional neuroanatomy of major depression: An fMRI study using an emotional activation paradigm. Neuroreport, 9(14), 3253–3258.

    Google Scholar 

  • Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition,55(1), 30–40.

    Article  Google Scholar 

  • Bruder, G. E., Stewart, J. W., Tenke, C. E., McGrath, P. J., Leite, P., Bhattacharya, N., & Quitkin, F. M. (2001). Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biological Psychiatry, 49(5), 416–425.

    Google Scholar 

  • Bryant, R. A., Kemp, A. H., Felmingham, K. L., Liddell, B., Olivieri, G., Peduto, A., … Williams, L. M. (2008). Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: An fMRI study. Human Brain Mapping, 29(5), 517–523.

    Article  Google Scholar 

  • Coffey, C. E., Wilkinson, W. E., Weiner, R. D., Djang, W. T., Webb, M. C., Figiel, G. S., & Spritzer, C. E. (1993). Quantitative cerebral anatomy in depression: A controlled magnetic resonance imaging study. Archives of General Psychiatry, 50(1), 7–16.

    Google Scholar 

  • Collette, F., & Van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience and Biobehavioral Reviews,26(2), 105–125.

    Article  Google Scholar 

  • Conway, M. A. (1990). Autobiographical memory: An introduction. Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Costafreda, S. G., Brammer, M. J., David, A. S., & Fu, C. H. (2008). Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Research Reviews,58(1), 57–70.

    Article  Google Scholar 

  • Craik, F. I., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General,104(3), 268–294.

    Article  Google Scholar 

  • Davidson, R. J. (2000). Affective style, psychopathology, and resilience: Brain mechanisms and plasticity. American Psychologist,55(11), 1196–2214.

    Article  Google Scholar 

  • Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression: Perspectives from affective neuroscience. Annual Review of Psychology,53(1), 545–574.

    Article  Google Scholar 

  • Debener, S., Beauducel, A., Nessler, D., Brocke, B., Heilemann, H., & Kayser, J. (2000). Is resting anterior EEG alpha asymmetry a trait marker for depression? Neuropsychobiology,41(1), 31–37.

    Article  Google Scholar 

  • Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition,79(1–2), 1–37.

    Article  Google Scholar 

  • De Lanerolle, N. C., Kim, J. H., Robbins, R. J., & Spencer, D. D. (1989). Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Research,495(2), 387–395.

    Article  Google Scholar 

  • D’esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature,378(6554), 279–285.

    Article  Google Scholar 

  • Dilger, S., Straube, T., Mentzel, H. J., Fitzek, C., Reichenbach, J. R., Hecht, H., … Miltner, W. H. (2003). Brain activation to phobia-related pictures in spider phobic humans: An event-related functional magnetic resonance imaging study. Neuroscience Letters, 348(1), 29–32.

    Article  Google Scholar 

  • Drevets, W. C. (2000). Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Progress in Brain Research,126, 413–431.

    Article  Google Scholar 

  • Drevets, W. C. (2001). Neuroimaging and neuropathological studies of depression: Implications for the cognitive-emotional features of mood disorders. Current Opinion in Neurobiology,11(2), 240–249.

    Article  Google Scholar 

  • Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums,13(8), 663–668.

    Article  Google Scholar 

  • Drevets, W. C., Videen, T. O., Price, J. L., Preskorn, S. H., Carmichael, S. T., & Raichle, M. E. (1992). A functional anatomical study of unipolar depression. Journal of Neuroscience,12(9), 3628–3641.

    Article  Google Scholar 

  • Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia,33(3), 261–268.

    Article  Google Scholar 

  • Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion,6(3–4), 169–200.

    Article  Google Scholar 

  • Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron,88(1), 33–46.

    Article  Google Scholar 

  • Eysenck, M. W., & Keane, M. T. (2013). Cognitive psychology: A student’s handbook. London: Psychology Press.

    Book  Google Scholar 

  • Gilbertson, M. W., Shenton, M. E., Ciszewski, A., Kasai, K., Lasko, N. B., Orr, S. P., & Pitman, R. K. (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neuroscience, 5(11), 1242–1249.

    Google Scholar 

  • Gold, J., & Stricker, G. (2001). A relational psychodynamic perspective on assimilative integration. Journal of Psychotherapy Integration,11(1), 43–58.

    Article  Google Scholar 

  • Gould, E., Tanapat, P., Rydel, T., & Hastings, N. (2000). Regulation of hippocampal neurogenesis in adulthood. Biological Psychiatry,48(8), 715–720.

    Article  Google Scholar 

  • Hampson, R. E., Simeral, J. D., & Deadwyler, S. A. (1999). Distribution of spatial and nonspatial information in dorsal hippocampus. Nature,402(6762), 610–618.

    Article  Google Scholar 

  • Hasler, G., Drevets, W. C., Manji, H. K., & Charney, D. S. (2004). Discovering endophenotypes for major depression. Neuropsychopharmacology,29(10), 1765–1781.

    Article  Google Scholar 

  • Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry,49(12), 1023–1039.

    Article  Google Scholar 

  • Huey, E. D., Zahn, R., Krueger, F., Moll, J., Kapogiannis, D., Wassermann, E. M., & Grafman, J. (2008). A psychological and neuroanatomical model of obsessive-compulsive disorder. The Journal of Neuropsychiatry and Clinical Neurosciences, 20(4), 390–408.

    Google Scholar 

  • Kim, J. J., & Diamond, D. M. (2002). The stressed hippocampus, synaptic plasticity and lost memories. Nature Reviews Neuroscience,3(6), 453–461.

    Article  Google Scholar 

  • Lazarus, R. S. (1991). Progress on a cognitive-motivational-relational theory of emotion. American Psychologist, 46(8), 819–834.

    Article  Google Scholar 

  • Lyon, D. R., Gunzelmann, G., & Gluck, K. A. (2008). A computational model of spatial visualization capacity. Cognitive Psychology, 57(2), 122–152.

    Google Scholar 

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science,288(5472), 1835–1838.

    Article  Google Scholar 

  • Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience,20(24), 9104–9110.

    Article  Google Scholar 

  • Mayberg, H. S., Brannan, S. K., Mahurin, R. K., Jerabek, P. A., Brickman, J. S., Tekell, J. L., … Fox, P. T. (1997). Cingulate function in depression: A potential predictor of treatment response. Neuroreport, 8(4), 1057–1061.

    Article  Google Scholar 

  • Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., … Fox, P. T. (1999). Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry, 156(5), 675–682.

    Google Scholar 

  • Nader, K., Schafe, G. E., & LeDoux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature,406(6797), 722–731.

    Article  Google Scholar 

  • Naqvi, N., Shiv, B., & Bechara, A. (2006). The role of emotion in decision making: A cognitive neuroscience perspective. Current Directions in Psychological Science,15(5), 260–264.

    Article  Google Scholar 

  • Nutt, D. J., Ballenger, J. C., Sheehan, D., & Wittchen, H. U. (2002). Generalized anxiety disorder: Comorbidity, comparative biology and treatment. International Journal of Neuropsychopharmacology,5(4), 315–325.

    Article  Google Scholar 

  • Paré, D., Quirk, G. J., & Ledoux, J. E. (2004). New vistas on amygdala networks in conditioned fear. Journal of Neurophysiology,92(1), 1–9.

    Article  Google Scholar 

  • Pinel, J. P. (2013). Biopsychology. London: Pearson Higher Ed.

    Google Scholar 

  • Plagnol, A. (2002). La structure pliée des espaces de représentation: théorie élémentaire. Intellectica,35, 27–81.

    Google Scholar 

  • Plagnol, A. (2004). Espaces de représentation: Théorie élémentaire et psychopathologie [Representational spaces: Elements and psychopathology]. Paris: Editions du CNRS.

    Google Scholar 

  • Plagnol, A. (in press). Principes de navigation dans les mondes possibles [Principles of navigation in possible worlds]. Garches, France: Terra Cotta.

    Google Scholar 

  • Ragni, M., & Knauff, M. (2013). A theory and a computational model of spatial reasoning with preferred mental models. Psychological Review,120(3), 561–588.

    Article  Google Scholar 

  • Roca, M., Parr, A., Thompson, R., Woolgar, A., Torralva, T., Antoun, N., … Duncan, J. (2009). Executive function and fluid intelligence after frontal lobe lesions. Brain, 133(1), 234–247.

    Article  Google Scholar 

  • Rodrigues, S. M., Schafe, G. E., & LeDoux, J. E. (2004). Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron,44(1), 75–91.

    Article  Google Scholar 

  • Rumelhart, D. E. (2017). Schemata: The building blocks of cognition. In R. J. Spiro, B. C. Bruce, & W. F. Brewer (Eds.), Theoretical issues in reading comprehension (pp. 33–58). London: Routledge.

    Chapter  Google Scholar 

  • Sapolsky, R. M., Uno, H., Rebert, C. S., & Finch, C. E. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience,10(9), 2897–2902.

    Article  Google Scholar 

  • Saxena, S., Brody, A. L., Schwartz, J. M., & Baxter, L. R. (1998). Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. The British Journal of Psychiatry,173, 26–37.

    Article  Google Scholar 

  • Saxena, S., Gorbis, E., O’neill, J., Baker, S. K., Mandelkern, M. A., Maidment, K. M., … London, E. D. (2009). Rapid effects of brief intensive cognitive-behavioral therapy on brain glucose metabolism in obsessive-compulsive disorder. Molecular Psychiatry, 14(2), 197–208.

    Article  Google Scholar 

  • Schulte-Rüther, M., Markowitsch, H. J., Fink, G. R., & Piefke, M. (2007). Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: A functional magnetic resonance imaging approach to empathy. Journal of Cognitive Neuroscience,19(8), 1354–1372.

    Article  Google Scholar 

  • Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,298(1089), 199–209.

    Article  Google Scholar 

  • Shamay-Tsoory, S. G., Aharon-Peretz, J., & Perry, D. (2009). Two systems for empathy: A double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain,132(3), 617–627.

    Article  Google Scholar 

  • Sheline, Y. I. (2000). 3D MRI studies of neuroanatomic changes in unipolar major depression: The role of stress and medical comorbidity. Biological Psychiatry,48(8), 791–800.

    Article  Google Scholar 

  • Sheline, Y. I., Sanghavi, M., Mintun, M. A., & Gado, M. H. (1999). Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. Journal of Neuroscience,19(12), 5034–5043.

    Article  Google Scholar 

  • Turner, J. C., Meyer, D. K., & Schweinle, A. (2003). The importance of emotion in theories of motivation: Empirical, methodological, and theoretical considerations from a goal theory perspective. International Journal of Educational Research, 39(4–5), 375–393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Ward .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ward, T., Plagnol, A. (2019). Insights from Cognitive Neuroscience. In: Cognitive Psychodynamics as an Integrative Framework in Counselling Psychology and Psychotherapy. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-25823-8_2

Download citation

Publish with us

Policies and ethics