Skip to main content

Prenatal and Early Postnatal Influences on Neurodevelopment: The Role of Epigenetics

  • Chapter
  • First Online:
Adolescent Health and Wellbeing

Abstract

The human brain develops through a sophisticated process that starts a few weeks after conception and reaches its completion 20–30 years later. Changes that take place over this timeframe are of primary importance, as they constitute the “hardware” of the adult brain. Both genetic and environmental factors are crucial for brain development. In particular, brain sensitivity to the environment is maximum during prenatal and early postnatal life, when brain undergoes most of its development and is extremely vulnerable to both organizing and disorganizing experiences. The quality of prenatal and early postnatal environment may then influence the trajectory of neuronal development and contribute to shape the developing brain, thus producing long-lasting effects on behavior. Epigenetic changes have been reported to represent the molecular mechanisms by which the early environment modulates the expression of genes, including NR3C1, CRH, and 11-Beta-HSD2 involved in the HPA axis activity, or BDNF and SLC6A4 implicated in neurogenesis and serotonin neurotransmission, whose activity is crucial for normal brain development. However, the brain continues to mature during adolescence, when a reorganization of the highest order associative areas occurs by an intense synaptic pruning. Adolescence, therefore, represents a time window during which the consequences of early stress exposure can be counteracted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–41.

    Article  PubMed  Google Scholar 

  2. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20(4):327–48.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010;35(1):147–68.

    Article  PubMed  Google Scholar 

  4. Kandel ER, Schwartz JH, Jessel TM. Principles of neural science. 4th ed. New York: McGraw-Hill Companies; 2000.

    Google Scholar 

  5. Iacopetti P, Michelini M, Stuckmann I, Oback B, Aaku-Saraste E, Huttner WB. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci U S A. 1999;96(8):4639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Budday S, Steinmann P, Kuhl E. Physical biology of human brain development. Front Cell Neurosci. 2015;9:257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev. 2003;27(1-2):3–18.

    Article  PubMed  Google Scholar 

  8. Oppenheim RW. The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci. 1989;12(7):252–5.

    Article  CAS  PubMed  Google Scholar 

  9. Kolb B, Gibb R. Brain plasticity and behaviour in the developing brain. J Can Acad Child Adolesc Psychiatry. 2011;20(4):265–76.

    PubMed  PubMed Central  Google Scholar 

  10. Levitt P. Structural and functional maturation of the developing primate brain. J Pediatr. 2003;143(4 Suppl):S35–45.

    Article  CAS  PubMed  Google Scholar 

  11. Tierney AL, Nelson CA. Brain development and the role of experience in the early years. Zero Three. 2009;30(2):9–13.

    PubMed  PubMed Central  Google Scholar 

  12. Craik FI, Bialystok E. Cognition through the lifespan: mechanisms of change. Trends Cogn Sci. 2006;10(3):131–8.

    Article  PubMed  Google Scholar 

  13. Casey BJ, Tottenham N, Liston C, Durston S. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci. 2005;9(3):104–10.

    Article  CAS  PubMed  Google Scholar 

  14. van Dyck LI, Morrow EM. Genetic control of postnatal human brain growth. Curr Opin Neurol. 2017;30(1):114–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HB, Rakic P, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci U S A. 2011;108(32):13281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buwalda B, Geerdink M, Vidal J, Koolhaas JM. Social behavior and social stress in adolescence: a focus on animal models. Neurosci Biobehav Rev. 2011;35(8):1713–21.

    Article  PubMed  Google Scholar 

  17. Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. 2013;9:449–61.

    PubMed  PubMed Central  Google Scholar 

  18. Dehaene-Lambertz G, Spelke ES. The infancy of the human brain. Neuron. 2015;88(1):93–109.

    Article  CAS  PubMed  Google Scholar 

  19. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A. 2000;97(8):4398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kozorovitskiy Y, Hughes M, Lee K, Gould E. Fatherhood affects dendritic spines and vasopressin V1a receptors in the primate prefrontal cortex. Nat Neurosci. 2006;9(9):1094–5.

    Article  CAS  PubMed  Google Scholar 

  21. Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci. 2003;23(27):9240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Büchel C, et al. Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci. 2006;26(23):6314–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newman L, Judd F, Olsson CA, Castle D, Bousman C, Sheehan P, et al. Early origins of mental disorder - risk factors in the perinatal and infant period. BMC Psychiatry. 2016;16:270.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Novais A, Monteiro S, Roque S, Correia-Neves M, Sousa N. How age, sex and genotype shape the stress response. Neurobiol Stress. 2017;6:44–56.

    Article  PubMed  Google Scholar 

  25. Barker DJ, Eriksson JG, Forsén T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kim DR, Bale TL, Epperson CN. Prenatal programming of mental illness: current understanding of relationship and mechanisms. Curr Psychiatry Rep. 2015;17(2):5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev. 2008;32(6):1073–86.

    Article  CAS  PubMed  Google Scholar 

  28. Van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci Biobehav Rev. 2017;S0149–7634(16)30734–5.

    Google Scholar 

  29. Palumbo S, Mariotti V, Iofrida C, Pellegrini S. Genes and aggressive behavior: epigenetic mechanisms underlying individual susceptibility to aversive environments. Front Behav Neurosci. 2018;12:117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Weinstock M. Prenatal stressors in rodents: effects on behavior. Neurobiol Stress. 2017;6:3–13.

    Article  PubMed  Google Scholar 

  31. Hosseini-Sharifabad M, Hadinedoushan H. Prenatal stress induces learning deficits and is associated with a decrease in granules and CA3 cell dendritic tree size in rat hippocampus. Anat Sci Int. 2007;82(4):211–7.

    Article  PubMed  Google Scholar 

  32. Jia N, Yang K, Sun Q, Cai Q, Li H, Cheng D, et al. Prenatal stress causes dendritic atrophy of pyramidal neurons in hippocampal CA3 region by glutamate in offspring rats. Dev Neurobiol. 2010;70(2):114–25.

    CAS  PubMed  Google Scholar 

  33. Martínez-Téllez RI, Hernández-Torres E, Gamboa C, Flores G. Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse. 2009;63(9):794–804.

    Article  PubMed  CAS  Google Scholar 

  34. Murmu MS, Salomon S, Biala Y, Weinstock M, Braun K, Bock J. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci. 2006;24(5):1477–87.

    Article  PubMed  Google Scholar 

  35. Lemaire V, Koehl M, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci U S A. 2000;97(20):11032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujioka A, Fujioka T, Ishida Y, Maekawa T, Nakamura S. Differential effects of prenatal stress on the morphological maturation of hippocampal neurons. Neuroscience. 2006;141(2):907–15.

    Article  CAS  PubMed  Google Scholar 

  37. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10(6):434–45.

    Article  CAS  PubMed  Google Scholar 

  38. Davis EP, Pfaff D. Sexually dimorphic responses to early adversity: implications for affective problems and autism spectrum disorder. Psychoneuroendocrinology. 2014;49:11–25.

    Article  PubMed  Google Scholar 

  39. Zuena AR, Mairesse J, Casolini P, Cinque C, Alemà GS, Morley-Fletcher S, et al. Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS One. 2008;3(5):e2170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Brunton PJ, Russell JA. Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex-specific effects. J Neuroendocrinol. 2010;22(4):258–71.

    Article  CAS  PubMed  Google Scholar 

  41. Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008;28(36):9055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zagron G, Weinstock M. Maternal adrenal hormone secretion mediates behavioural alterations induced by prenatal stress in male and female rats. Behav Brain Res. 2006;175(2):323–8.

    Article  CAS  PubMed  Google Scholar 

  43. Richardson HN, Zorrilla EP, Mandyam CD, Rivier CL. Exposure to repetitive versus varied stress during prenatal development generates two distinct anxiogenic and neuroendocrine profiles in adulthood. Endocrinology. 2006;147(5):2506–17.

    Article  CAS  PubMed  Google Scholar 

  44. Malaspina D, Corcoran C, Kleinhaus KR, Perrin MC, Fennig S, Nahon D, et al. Acute maternal stress in pregnancy and schizophrenia in offspring: a cohort prospective study. BMC Psychiatry. 2008;8:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, et al. Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry. 2008;65(2):146–52.

    Article  PubMed  Google Scholar 

  46. Lee YA, Yamaguchi Y, Goto Y. Neurodevelopmental plasticity in pre- and postnatal environmental interactions: implications for psychiatric disorders from an evolutionary perspective. Neural Plast. 2015;2015:291476.

    PubMed  PubMed Central  Google Scholar 

  47. Krugers HJ, Arp JM, Xiong H, Kanatsou S, Lesuis SL, Korosi A, et al. Early life adversity: lasting consequences for emotional learning. Neurobiol Stress. 2017;6:14–21.

    Article  PubMed  Google Scholar 

  48. Tottenham N, Hare TA, Quinn BT, McCarry TW, Nurse M, Gilhooly T, et al. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev Sci. 2010;13(1):46–61.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bos KJ, Fox N, Zeanah CH, Nelson Iii CA. Effects of early psychosocial deprivation on the development of memory and executive function. Front Behav Neurosci. 2009;3:16.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mehta MA, Golembo NI, Nosarti C, Colvert E, Mota A, Williams SC, et al. Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian Adoptees study pilot. J Child Psychol Psychiatry. 2009;50(8):943–51.

    Article  PubMed  Google Scholar 

  51. McLaughlin KA, Sheridan MA, Winter W, Fox NA, Zeanah CH, Nelson CA. Widespread reductions in cortical thickness following severe early-life deprivation: a neurodevelopmental pathway to attention-deficit/hyperactivity disorder. Biol Psychiatry. 2014;76(8):629–38.

    Article  PubMed  Google Scholar 

  52. Eluvathingal TJ, Chugani HT, Behen ME, Juhász C, Muzik O, Maqbool M, et al. Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatrics. 2006;117(6):2093–100.

    Article  PubMed  Google Scholar 

  53. Govindan RM, Behen ME, Helder E, Makki MI, Chugani HT. Altered water diffusivity in cortical association tracts in children with early deprivation identified with Tract-Based Spatial Statistics (TBSS). Cereb Cortex. 2010;20(3):561–9.

    Article  PubMed  Google Scholar 

  54. Nelson CA, Bos K, Gunnar MR, Sonuga-Barke EJ. The neurobiological toll of early human deprivation. Monogr Soc Res Child Dev. 2011;76(4):127–46.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Champagne FA. Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol. 2008;29(3):386–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen Y, Baram TZ. Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology. 2016;41(1):197–206.

    Article  PubMed  Google Scholar 

  57. Haller J, Harold G, Sandi C, Neumann ID. Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. J Neuroendocrinol. 2014;26(10):724–38.

    Article  CAS  PubMed  Google Scholar 

  58. Liu D, Diorio J, Day JC, Francis DD, Meaney MJ. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci. 2000;3(8):799–806.

    Article  CAS  PubMed  Google Scholar 

  59. Bredy TW, Grant RJ, Champagne DL, Meaney MJ. Maternal care influences neuronal survival in the hippocampus of the rat. Eur J Neurosci. 2003;18(10):2903–9.

    Article  PubMed  Google Scholar 

  60. Bagot RC, van Hasselt FN, Champagne DL, Meaney MJ, Krugers HJ, Joëls M. Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus. Neurobiol Learn Mem. 2009;92(3):292–300.

    Article  PubMed  Google Scholar 

  61. Champagne DL, Bagot RC, van Hasselt F, Ramakers G, Meaney MJ, de Kloet ER, et al. Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J Neurosci. 2008;28(23):6037–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Monroy E, Hernández-Torres E, Flores G. Maternal separation disrupts dendritic morphology of neurons in prefrontal cortex, hippocampus, and nucleus accumbens in male rat offspring. J Chem Neuroanat. 2010;40(2):93–101.

    Article  PubMed  Google Scholar 

  63. Bock J, Gruss M, Becker S, Braun K. Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: correlation with developmental time windows. Cereb Cortex. 2005;15(6):802–8.

    Article  PubMed  Google Scholar 

  64. Chocyk A, Bobula B, Dudys D, Przyborowska A, Majcher-Maślanka I, Hess G, et al. Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur J Neurosci. 2013;38(1):2089–107.

    Article  PubMed  Google Scholar 

  65. Yang XD, Liao XM, Uribe-Mariño A, Liu R, Xie XM, Jia J, et al. Stress during a critical postnatal period induces region-specific structural abnormalities and dysfunction of the prefrontal cortex via CRF1. Neuropsychopharmacology. 2015;40(5):1203–15.

    Article  CAS  PubMed  Google Scholar 

  66. Veenema AH, Blume A, Niederle D, Buwalda B, Neumann ID. Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci. 2006;24(6):1711–20.

    Article  PubMed  Google Scholar 

  67. Veenema AH, Bredewold R, Neumann ID. Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology. 2007;32(5):437–50.

    Article  CAS  PubMed  Google Scholar 

  68. Clancy B, Finlay BL, Darlington RB, Anand KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931–7.

    Article  PubMed  Google Scholar 

  69. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nikolova YS, Hariri AR. Can we observe epigenetic effects on human brain function? Trends Cogn Sci. 2015;19(7):366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol. 2007;23(3):297–307.

    Article  CAS  PubMed  Google Scholar 

  72. Chhabra R. miRNA and methylation: a multifaceted liaison. Chembiochem. 2015;16(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  73. Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol. 2009;16(9):990–5.

    Article  CAS  PubMed  Google Scholar 

  74. Gelfman S, Cohen N, Yearim A, Ast G. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure. Genome Res. 2013;23(5):789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  CAS  PubMed  Google Scholar 

  76. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  77. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    Article  CAS  PubMed  Google Scholar 

  78. Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res. 2013;41(21):9593–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  PubMed  Google Scholar 

  80. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16(4):201–12.

    Article  CAS  PubMed  Google Scholar 

  82. Crews D. Epigenetics and its implications for behavioral neuroendocrinology. Front Neuroendocrinol. 2008;29(3):344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bale TL. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci. 2015;16(6):332–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013;339(6118):448–52.

    Article  CAS  PubMed  Google Scholar 

  85. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A. 2003;100(5):2538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis. 2003;35(2):88–93.

    Article  CAS  PubMed  Google Scholar 

  87. Helfrich-Förster C. Interactions between psychosocial stress and the circadian endogenous clock. Psychiatry J. 2017;6(4):277–89.

    Google Scholar 

  88. O’Mahony SM, Clarke G, Dinan TG, Cryan JF. Early-life adversity and brain development: is the microbiome a missing piece of the puzzle? Neuroscience. 2017;342:37–54.

    Article  PubMed  CAS  Google Scholar 

  89. Talge NM, Neal C, Glover V. Early stress TaRaPSNFaNEoCaAMH. Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry. 2007;48(3-4):245–61.

    Article  PubMed  Google Scholar 

  90. Abe H, Hidaka N, Kawagoe C, Odagiri K, Watanabe Y, Ikeda T, et al. Prenatal psychological stress causes higher emotionality, depression-like behavior, and elevated activity in the hypothalamo-pituitary-adrenal axis. Neurosci Res. 2007;59(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  91. Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol. 2001;185(1-2):61–71.

    Article  CAS  PubMed  Google Scholar 

  92. Jensen Peña C, Monk C, Champagne FA. Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS One. 2012;7(6):e39791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Monk C, Feng T, Lee S, Krupska I, Champagne FA, Tycko B. Distress during pregnancy: epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. Am J Psychiatry. 2016;173(7):705–13.

    Article  PubMed  PubMed Central  Google Scholar 

  94. O’Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O’Connor TG, Glover V. Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology. 2012;37(6):818–26.

    Article  PubMed  CAS  Google Scholar 

  95. Marsit CJ, Maccani MA, Padbury JF, Lester BM. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One. 2012;7(3):e33794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2):97–106.

    Article  PubMed  Google Scholar 

  97. Hompes T, Izzi B, Gellens E, Morreels M, Fieuws S, Pexsters A, et al. Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res. 2013;47(7):880–91.

    Article  PubMed  Google Scholar 

  98. Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ. The roles of DNA methylation of NR3C1 and 11β-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics. 2013;8(12):1321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Perroud N, Rutembesa E, Paoloni-Giacobino A, Mutabaruka J, Mutesa L, Stenz L, et al. The Tutsi genocide and transgenerational transmission of maternal stress: epigenetics and biology of the HPA axis. World J Biol Psychiatry. 2014;15(4):334–45.

    Article  PubMed  Google Scholar 

  100. Radtke KM, Ruf M, Gunter HM, Dohrmann K, Schauer M, Meyer A, et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl Psychiatry. 2011;1:e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gunnar MR, Cheatham CL. Brain and behavior interface: stress and the developing brain. Infant Ment Health J. 2003;24:195–211.

    Article  Google Scholar 

  102. Clarke G, O’Mahony SM, Dinan TG, Cryan JF. Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr. 2014;103(8):812–9.

    Article  CAS  PubMed  Google Scholar 

  103. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997;277(5332):1659–62.

    Article  CAS  PubMed  Google Scholar 

  104. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847–54.

    Article  CAS  PubMed  Google Scholar 

  105. Weaver IC. Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: let’s call the whole thing off. Epigenetics. 2007;2(1):22–8.

    Article  PubMed  Google Scholar 

  106. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonté B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Francis D, Diorio J, Liu D, Meaney MJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science. 1999;286(5442):1155–8.

    Article  CAS  PubMed  Google Scholar 

  108. Champagne FA, Francis DD, Mar A, Meaney MJ. Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav. 2003;79(3):359–71.

    Article  CAS  PubMed  Google Scholar 

  109. Champagne F, Diorio J, Sharma S, Meaney MJ. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc Natl Acad Sci U S A. 2001;98(22):12736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bridges RS. Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol. 2015;36:178–96.

    Article  CAS  PubMed  Google Scholar 

  111. Young LJ, Wang Z, Donaldson R, Rissman EF. Estrogen receptor alpha is essential for induction of oxytocin receptor by estrogen. Neuroreport. 1998;9(5):933–6.

    Article  CAS  PubMed  Google Scholar 

  112. Champagne FA, Weaver IC, Diorio J, Sharma S, Meaney MJ. Natural variations in maternal care are associated with estrogen receptor alpha expression and estrogen sensitivity in the medial preoptic area. Endocrinology. 2003;144(11):4720–4.

    Article  CAS  PubMed  Google Scholar 

  113. Champagne FA, Weaver IC, Diorio J, Dymov S, Szyf M, Meaney MJ. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology. 2006;147(6):2909–15.

    Article  CAS  PubMed  Google Scholar 

  114. Champagne FA, Meaney MJ. Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behav Neurosci. 2007;121(6):1353–63.

    Article  PubMed  Google Scholar 

  115. Alderson RF, Alterman AL, Barde YA, Lindsay RM. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron. 1990;5(3):297–306.

    Article  CAS  PubMed  Google Scholar 

  116. Hofer MM, Barde YA. Brain-derived neurotrophic factor prevents neuronal death in vivo. Nature. 1988;331(6153):261–2.

    Article  CAS  PubMed  Google Scholar 

  117. Kalcheim C, Gendreau M. Brain-derived neurotrophic factor stimulates survival and neuronal differentiation in cultured avian neural crest. Brain Res. 1988;469(1-2):79–86.

    Article  CAS  PubMed  Google Scholar 

  118. Branchi I. The mouse communal nest: investigating the epigenetic influences of the early social environment on brain and behavior development. Neurosci Biobehav Rev. 2009;33(4):551–9.

    Article  PubMed  Google Scholar 

  119. Branchi I, D’Andrea I, Sietzema J, Fiore M, Di Fausto V, Aloe L, et al. Early social enrichment augments adult hippocampal BDNF levels and survival of BrdU-positive cells while increasing anxiety- and “depression”-like behavior. J Neurosci Res. 2006;83(6):965–73.

    Article  CAS  PubMed  Google Scholar 

  120. Berry A, Panetta P, Luoni A, Bellisario V, Capoccia S, Riva MA, et al. Decreased Bdnf expression and reduced social behavior in periadolescent rats following prenatal stress. Dev Psychobiol. 2015;57(3):365–73.

    Article  CAS  PubMed  Google Scholar 

  121. Chatterjee D, Chatterjee-Chakraborty M, Rees S, Cauchi J, de Medeiros CB, Fleming AS. Maternal isolation alters the expression of neural proteins during development: ‘Stroking’ stimulation reverses these effects. Brain Res. 2007;1158:11–27.

    Article  CAS  PubMed  Google Scholar 

  122. Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM. Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci. 2007;25(10):3091–8.

    Article  PubMed  Google Scholar 

  123. Kikusui T, Ichikawa S, Mori Y. Maternal deprivation by early weaning increases corticosterone and decreases hippocampal BDNF and neurogenesis in mice. Psychoneuroendocrinology. 2009;34(5):762–72.

    Article  CAS  PubMed  Google Scholar 

  124. Macrì S, Laviola G, Leussis MP, Andersen SL. Abnormal behavioral and neurotrophic development in the younger sibling receiving less maternal care in a communal nursing paradigm in rats. Psychoneuroendocrinology. 2010;35(3):392–402.

    Article  PubMed  CAS  Google Scholar 

  125. Boersma GJ, Lee RS, Cordner ZA, Ewald ER, Purcell RH, Moghadam AA, et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics. 2014;9(3):437–47.

    Article  PubMed  Google Scholar 

  126. Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A. 2015;112(22):6807–13.

    Article  CAS  PubMed  Google Scholar 

  127. Roth TL, Lubin FD, Funk AJ, Sweatt JD. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry. 2009;65(9):760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Blaze J, Scheuing L, Roth TL. Differential methylation of genes in the medial prefrontal cortex of developing and adult rats following exposure to maltreatment or nurturing care during infancy. Dev Neurosci. 2013;35(4):306–16.

    Article  CAS  PubMed  Google Scholar 

  129. Roth TL, Matt S, Chen K, Blaze J. Bdnf DNA methylation modifications in the hippocampus and amygdala of male and female rats exposed to different caregiving environments outside the homecage. Dev Psychobiol. 2014;56(8):1755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Doherty TS, Forster A, Roth TL. Global and gene-specific DNA methylation alterations in the adolescent amygdala and hippocampus in an animal model of caregiver maltreatment. Behav Brain Res. 2016;298(Pt A):55–61.

    Article  CAS  PubMed  Google Scholar 

  131. Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics. 2015;10(5):408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Thaler L, Gauvin L, Joober R, Groleau P, de Guzman R, Ambalavanan A, et al. Methylation of BDNF in women with bulimic eating syndromes: associations with childhood abuse and borderline personality disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;54:43–9.

    Article  CAS  Google Scholar 

  133. Perroud N, Salzmann A, Prada P, Nicastro R, Hoeppli ME, Furrer S, et al. Response to psychotherapy in borderline personality disorder and methylation status of the BDNF gene. Transl Psychiatry. 2013;3:e207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Olsson CA, Foley DL, Parkinson-Bates M, Byrnes G, McKenzie M, Patton GC, et al. Prospects for epigenetic research within cohort studies of psychological disorder: a pilot investigation of a peripheral cell marker of epigenetic risk for depression. Biol Psychol. 2010;83(2):159–65.

    Article  CAS  PubMed  Google Scholar 

  135. Philibert R, Madan A, Andersen A, Cadoret R, Packer H, Sandhu H. Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(1):101–5.

    Article  CAS  PubMed  Google Scholar 

  136. Devlin AM, Brain U, Austin J, Oberlander TF. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS One. 2010;5(8):e12201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Beach SR, Brody GH, Todorov AA, Gunter TD, Philibert RA. Methylation at 5HTT mediates the impact of child sex abuse on women’s antisocial behavior: an examination of the Iowa adoptee sample. Psychosom Med. 2011;73(1):83–7.

    Article  CAS  PubMed  Google Scholar 

  138. Kang HJ, Kim JM, Stewart R, Kim SY, Bae KY, Kim SW, et al. Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;44:23–8.

    Article  CAS  Google Scholar 

  139. Ouellet-Morin I, Wong CC, Danese A, Pariante CM, Papadopoulos AS, Mill J, et al. Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins. Psychol Med. 2013;43(9):1813–23.

    Article  CAS  PubMed  Google Scholar 

  140. Mensà E, Latini S, Ramini D, Storci G, Bonafè M, Olivieri F. The telomere world and aging: analytical challenges and future perspectives. Ageing Res Rev. 2019;50:27–42.

    Article  PubMed  CAS  Google Scholar 

  141. Entringer S, Epel ES, Lin J, Buss C, Shahbaba B, Blackburn EH, et al. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obstet Gynecol. 2013;208(2):134.e1–7.

    Article  Google Scholar 

  142. Marchetto NM, Glynn RA, Ferry ML, Ostojic M, Wolff SM, Yao R, et al. Prenatal stress and newborn telomere length. Am J Obstet Gynecol. 2016;215(1):94.e1–8.

    Article  CAS  Google Scholar 

  143. Haussmann MF, Longenecker AS, Marchetto NM, Juliano SA, Bowden RM. Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proc Biol Sci. 2012;279(1732):1447–56.

    Article  CAS  PubMed  Google Scholar 

  144. Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595(2):489–503.

    Article  CAS  PubMed  Google Scholar 

  145. Jašarević E, Rodgers AB, Bale TL. A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol Stress. 2015;1:81–8.

    Article  PubMed  Google Scholar 

  146. Wang Y, Wang Z, Li F, Jia J, Song X, Qin S, et al. The gut-microglia connection: implications for central nervous system diseases. Front Immunol. 2018;9:2325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zijlmans MA, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 2015;53:233–45.

    Article  PubMed  Google Scholar 

  149. Bailey MT, Lubach GR, Coe CL. Prenatal stress alters bacterial colonization of the gut in infant monkeys. J Pediatr Gastroenterol Nutr. 2004;38(4):414–21.

    Article  PubMed  Google Scholar 

  150. Jašarević E, Howerton CL, Howard CD, Bale TL. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology. 2015;156(9):3265–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol. 2016;19(8):pyw020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–17.

    Article  CAS  PubMed  Google Scholar 

  155. Hoban AE, Stilling RM, Moloney G, Moloney RD, Shanahan F, Dinan TG, et al. Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. Microbiome. 2017;5(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509–18.

    Article  PubMed  Google Scholar 

  157. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19(2):146–8.

    Article  CAS  PubMed  Google Scholar 

  158. Arentsen T, Raith H, Qian Y, Forssberg H, Diaz Heijtz R. Host microbiota modulates development of social preference in mice. Microb Ecol Health Dis. 2015;26:29719.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Pellegrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mariotti, V., Palumbo, S., Pellegrini, S. (2019). Prenatal and Early Postnatal Influences on Neurodevelopment: The Role of Epigenetics. In: Pingitore, A., Mastorci, F., Vassalle, C. (eds) Adolescent Health and Wellbeing. Springer, Cham. https://doi.org/10.1007/978-3-030-25816-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25816-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25815-3

  • Online ISBN: 978-3-030-25816-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics