Skip to main content

Neuroimaging Findings of Delirium

  • Chapter
  • First Online:
Delirium
  • 1080 Accesses

Abstract

Neuroimaging is increasingly being used as a tool to gain a greater understanding of the pathogenesis of delirium. While initial neuroimaging investigations of delirium centered on qualitative analysis of brain computerized tomography (CT) or magnetic resonance imaging (MRI) lesions, voxel-based morphometry studies were the first to show specific gray and white matter structural correlates related to delirium. More recently, diffusion tensor imaging has offered insights into alterations in white matter pathways that may underlie delirium. Cerebral blood flow measurements using Xenon CT and MRI techniques have shown both regional and global decreases during delirium compared to baseline. Resting-state functional MRI has also been used to identify changes in functional cortical connectivity. Most recently, positron emission tomography (PET) MRI has given clues to pathologic protein alterations in delirium. Given the constraints of neuroimaging, research must proceed in a focused, hypothesis-driven manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salluh JI, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, Serafim RB, Stevens RD. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538.

    Article  Google Scholar 

  2. Hosker C, Ward D. Hypoactive delirium. BMJ. 2017;357:j2047.

    Article  Google Scholar 

  3. Sanders RD, Pandharipande PP, Davidson AJ, Ma D, Maze M. Anticipating and managing postoperative delirium and cognitive decline in adults. BMJ. 2011;343:d4331.

    Article  Google Scholar 

  4. Sanders RD. Hypothesis for the pathophysiology of delirium: role of baseline brain network connectivity and changes in inhibitory tone. Med Hypotheses. 2011;77(1):140–3.

    Article  Google Scholar 

  5. Yokota H, Ogawa S, Kurokawa A, Yamamoto Y. Regional cerebral blood flow in delirium patients. Psychiatry Clin Neurosci. 2003;57(3):337–9.

    Article  Google Scholar 

  6. Shioiri A, Kurumaji A, Takeuchi T, Matsuda H, Arai H, Nishikawa T. White matter abnormalities as a risk factor for postoperative delirium revealed by diffusion tensor imaging. Am J Geriatr Psychiatry. 2010;18(8):743–53.

    Article  Google Scholar 

  7. Choi SH, Lee H, Chung TS, Park KM, Jung YC, Kim SI, Kim JJ. Neural network functional connectivity during and after an episode of delirium. Am J Psychiatr. 2012;169(5):498–507.

    Article  Google Scholar 

  8. Gunther ML, Morandi A, Krauskopf E, Pandharipande P, Girard TD, Jackson JC, Thompson J, Shintani AK, Geevarghese S, Miller RR III, Canonico A. The association between brain volumes, delirium duration and cognitive outcomes in intensive care unit survivors: a prospective exploratory cohort magnetic resonance imaging study. Crit Care Med. 2012;40(7):2022.

    Article  Google Scholar 

  9. Morandi A, Rogers BP, Gunther ML, Merkle K, Pandharipande P, Girard TD, Jackson JC, Thompson J, Shintani AK, Geevarghese S, Miller RR III. The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging. Crit Care Med. 2012;40(7):2182.

    Article  Google Scholar 

  10. Root JC, Pryor KO, Downey R, Alici Y, Davis ML, Holodny A, Korc-Grodzicki B, Ahles T. Association of pre-operative brain pathology with post-operative delirium in a cohort of non-small cell lung cancer patients undergoing surgical resection. Psycho-Oncology. 2013;22(9):2087–94.

    Article  Google Scholar 

  11. Hatano Y, Narumoto J, Shibata K, Matsuoka T, Taniguchi S, Hata Y, Yamada K, Yaku H, Fukui K. White-matter hyperintensities predict delirium after cardiac surgery. Am J Geriatr Psychiatry. 2013;21(10):938–45.

    Article  Google Scholar 

  12. Brown CH IV, Faigle R, Klinker L, Bahouth M, Max L, LaFlam A, Neufeld KJ, Mandal K, Gottesman RF, Hogue CW Jr. The association of brain MRI characteristics and postoperative delirium in cardiac surgery patients. Clin Ther. 2015;37(12):2686–99.

    Article  Google Scholar 

  13. Omiya H, Yoshitani K, Yamada N, Kubota Y, Takahashi K, Kobayashi J, Ohnishi Y. Preoperative brain magnetic resonance imaging and postoperative delirium after off-pump coronary artery bypass grafting: a prospective cohort study. Can J Anesth/J C d’anesthésie. 2015;62(6):595–602.

    Article  Google Scholar 

  14. Cavallari M, Hshieh TT, Guttmann CR, Ngo LH, Meier DS, Schmitt EM, Marcantonio ER, Jones RN, Kosar CM, Fong TG, Press D. Brain atrophy and white-matter hyperintensities are not significantly associated with incidence and severity of postoperative delirium in older persons without dementia. Neurobiol Aging. 2015;36(6):2122–9.

    Article  Google Scholar 

  15. Naidech AM, Polnaszek KL, Berman MD, Voss JL. Hematoma locations predicting delirium symptoms after intracerebral hemorrhage. Neurocrit Care. 2016;24(3):397–403.

    Article  Google Scholar 

  16. Cavallari M, Dai W, Guttmann CR, Meier DS, Ngo LH, Hshieh TT, Callahan AE, Fong TG, Schmitt E, Dickerson BC, Press DZ. Neural substrates of vulnerability to postsurgical delirium as revealed by presurgical diffusion MRI. Brain. 2016;139(4):1282–94.

    Article  Google Scholar 

  17. Hshieh TT, Dai W, Cavallari M, Guttmann CR, Meier DS, Schmitt EM, Dickerson BC, Press DZ, Marcantonio ER, Jones RN, Gou YR. Cerebral blood flow MRI in the nondemented elderly is not predictive of post-operative delirium but is correlated with cognitive performance. J Cereb Blood Flow Metab. 2017;37(4):1386–97.

    Article  Google Scholar 

  18. Shioiri A, Kurumaji A, Takeuchi T, Nemoto K, Arai H, Nishikawa T. A decrease in the volume of gray matter as a risk factor for postoperative delirium revealed by an atlas-based method. Am J Geriatr Psychiatry. 2016;24(7):528–36.

    Article  Google Scholar 

  19. Haggstrom LR, Nelson JA, Wegner EA, Caplan GA. 2-18F-fluoro-2-deoxyglucose positron emission tomography in delirium. J Cereb Blood Flow Metab. 2017;37(11):3556–67.

    Article  CAS  Google Scholar 

  20. Cavallari M, Dai W, Guttmann CR, Meier DS, Ngo LH, Hshieh TT, Fong TG, Schmitt E, Press DZ, Travison TG, Marcantonio ER. Longitudinal diffusion changes following postoperative delirium in older people without dementia. Neurology. 2017;89(10):1020–7.

    Article  Google Scholar 

  21. Rolandi E, Cavedo E, Pievani M, Galluzzi S, Ribaldi F, Buckley C, Cunningham C, Guerra UP, Musarra M, Morzenti S, Magnaldi S. Association of postoperative delirium with markers of neurodegeneration and brain amyloidosis: a pilot study. Neurobiol Aging. 2018;61:93–101.

    Article  Google Scholar 

  22. Detweiler MB, Sherigar RM, Bader G, Sullivan K, Kenneth A, Kalafat N, Reddy P, Lutgens B. Association of white matter lesions, cerebral atrophy, intracranial extravascular calcifications, and ventricular-communicating hydrocephalus with delirium among veterans. South Med J. 2017;110(6):432–9.

    Article  Google Scholar 

  23. Kyeong S, Choi SH, Shin JE, Lee WS, Yang KH, Chung TS, Kim JJ. Functional connectivity of the circadian clock and neural substrates of sleep-wake disturbance in delirium. Psychiatry Res Neuroimaging. 2017;264:10–2.

    Article  Google Scholar 

  24. Matano F, Mizunari T, Yamada K, Kobayashi S, Murai Y, Morita A. Environmental and clinical risk factors for delirium in a neurosurgical center: a prospective study. World Neurosurg. 2017;103:424–30.

    Article  Google Scholar 

  25. Racine AM, Fong TG, Travison TG, Jones RN, Gou Y, Vasunilashorn SM, Marcantonio ER, Alsop DC, Inouye SK, Dickerson BC. Alzheimer’s-related cortical atrophy is associated with postoperative delirium severity in persons without dementia. Neurobiol Aging. 2017;59:55–63.

    Article  Google Scholar 

  26. van Montfort SJ, van Dellen E, van den Bosch AM, Otte WM, Schutte MJ, Choi SH, Chung TS, Kyeong S, Slooter AJ, Kim JJ. Resting-state fMRI reveals network disintegration during delirium. NeuroImage: Clinical. 2018;20:35–41.

    Article  Google Scholar 

  27. Qu J, Chen Y, Luo G, Zhong H, Xiao W, Yin H. Delirium in the acute phase of ischemic stroke: incidence, risk factors, and effects on functional outcome. J Stroke Cerebrovasc Dis. 2018;27(10):2641–7.

    Article  Google Scholar 

  28. Hijazi Z, Lange P, Watson R, Maier AB. The use of cerebral imaging for investigating delirium aetiology. Eur J Intern Med. 2018;52:35–9.

    Article  Google Scholar 

  29. Helenius J, Henninger N. Leukoaraiosis burden significantly modulates the association between infarct volume and National Institutes of Health Stroke Scale in ischemic stroke. Stroke. 2015;46(7):1857–63.

    Article  Google Scholar 

  30. Inouye SK, Leo-Summers L, Zhang Y, Bogardus ST Jr, Leslie DL, Agostini JV. A chart-based method for identification of delirium: validation compared with interviewer ratings using the confusion assessment method. J Am Geriatr Soc. 2005;53(2):312–8.

    Article  Google Scholar 

  31. Saczynski JS, Kosar CM, Xu G, Puelle MR, Schmitt E, Jones RN, Marcantonio ER, Wong B, Isaza I, Inouye SK. A tale of two methods: chart and interview methods for identifying delirium. J Am Geriatr Soc. 2014;62(3):518–24.

    Article  Google Scholar 

  32. Cunningham EL, McGuinness B, McAuley DF, Toombs J, Mawhinney T, O’Brien S, Beverland D, Schott JM, Lunn MP, Zetterberg H, Passmore AP. CSF beta-amyloid 1–42 concentration predicts delirium following elective arthroplasty surgery in an observational cohort study. Annals of surgery. 2019;269(6):1200–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Sanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanders, R., Rowley, P. (2020). Neuroimaging Findings of Delirium. In: Hughes, C., Pandharipande, P., Ely, E. (eds) Delirium. Springer, Cham. https://doi.org/10.1007/978-3-030-25751-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25751-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25750-7

  • Online ISBN: 978-3-030-25751-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics