Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we take advantage of the significant anisotropy of the 2D materials and InSe, which feature strong covalent bonding within crystalline layers, whilst the bonding between the layers has a comparatively weak van der Waals character. Each layer is reduced to a basis of its monolayer \(\mathbf {k\cdot p}\) bands, then in multilayer films we couple successive layers with tight-binding hops—which are between monolayer band states rather than atomic orbitals. A model developed using this approach is here described as a hybrid \(\mathbf {k\cdot p}\) tight-binding (HkpTB) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The parameter \(\nu \), which takes account of the extension of the wavefunction beyond the crystal sufrace, is reduced slightly in the fit to \(\nu =1.01\).

  2. 2.

    Especially so since any symmetry breaking will come from the interband hops, as we explore in Chap. 4—therefore, when we correct the gap the effect will be even smaller.

  3. 3.

    A significant contribution to the analysis in this section was made by A. Ceferino.

  4. 4.

    \(E_zd_z\) due to a plane of charge with \(n_e=5\times 10^{12}\) cm\(^{-2}\) in vacuum would have an energy \({\sim }75\) meV, which can be neglected when considering subband energetics, given the scale of the gap between the monolayer states of 2.8 eV.

References

  1. Wallace PR (1947) Phys Rev 71:622

    Article  ADS  Google Scholar 

  2. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Phys Rev Lett 105:136805

    Article  ADS  Google Scholar 

  3. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) ACS Nano 8:4033

    Article  Google Scholar 

  4. Rigoult J, Rimsky A, Kuhn A (1980) Acta Crystallogr B 36:916

    Article  Google Scholar 

  5. Bandurin DA, Tyurnina AV, Geliang LY, Mishchenko A, Zólyomi V, Morozov SV, Kumar RK, Gorbachev RV, Kudrynskyi ZR, Pezzini S, Kovalyuk ZD, Zeilter U, Novoselov KS, Patanè A, Eaves L, Grigorieva II, Fal’ko VI, Geim AK, Cao Y (2017) Nat Nanotechnol 12:223

    Article  ADS  Google Scholar 

  6. Kress-Rogers E, Nicholas R, Portal J, Chevy A (1982) Solid State Commun 44:379

    Article  ADS  Google Scholar 

  7. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  ADS  Google Scholar 

  8. Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219906

    Article  ADS  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  ADS  Google Scholar 

  10. Jacobberger RM, Machhi R, Wroblewski J, Taylor B, Gillian-Daniel AL, Arnold MS (2015) J Chem Edu 92:1903

    Article  Google Scholar 

  11. Na SR, Suk JW, Tao L, Akinwande D, Ruoff RS, Huang R, Liechti KM (2015) ACS Nano 9:1325

    Article  Google Scholar 

  12. Haar S, Bruna M, Lian JX, Tomarchio F, Olivier Y, Mazzaro R, Morandi V, Moran J, Ferrari AC, Beljonne D, Ciesielski A, Samor P (2016) J Phys Chem Lett 7:2714

    Article  Google Scholar 

  13. Chen H, MĂĽller MB, Gilmore KJ, Wallace GG, Li D (2008) Adv Mater 20:3557

    Article  Google Scholar 

  14. Liu Y-T, Zhu X-D, Duan Z-Q, Xie X-M (2013) Chem Commun 49:10305

    Article  Google Scholar 

  15. Abergel DSL, Wallbank JR, Chen X, Mucha-Kruczyński M, Fal’ko VI (2013) New J Phys 15:123009

    Article  Google Scholar 

  16. Wallbank JR, Patel AA, Mucha-Kruczyński M, Geim AK, Fal’ko VI (2013) Phys Rev B 87:245408

    Article  ADS  Google Scholar 

  17. Sevik C, Wallbank JR, Gülseren O, Peeters FM, Çakır D (2017) 2D Materials 4:035025

    Article  Google Scholar 

  18. Danovich M, Ruiz-Tijerina DA, Hunt RJ, Szyniszewski M, Drummond ND, Fal’ko VI (2018) Phys Rev B 97:195452

    Article  ADS  Google Scholar 

  19. Demirci S, Avazlı N, Durgun E, Cahangirov S (2017) Phys Rev B 95:115409

    Article  ADS  Google Scholar 

  20. Klimeš J, Bowler DR, Michaelides A (2009) J Phys Condens Matter 22:022201

    Article  ADS  Google Scholar 

  21. West LC, Eglash SJ (1985) Appl Phys Lett 46:1156

    Article  ADS  Google Scholar 

  22. Levine BF, Choi KK, Bethea CG, Walker J, Malik RJ (1987) Appl Phys Lett 50:1092

    Article  ADS  Google Scholar 

  23. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Science 264:553

    Article  ADS  Google Scholar 

  24. Köhler R, Tredicucci A, Beltram F, Beere HE, Linfild EH, Davies AG, Ritchie DA, Iotti RC, Rossi F (2002) Nature 417:156

    Article  ADS  Google Scholar 

  25. Ando T, Fowler AB, Stern F (1982) Rev Mod Phys 54:437

    Article  ADS  Google Scholar 

  26. Allakhverdiev KR, Babaev SS, Salaev EY, Tagyev MM (1979) Phys Status Solidi (b) 96:177

    Article  ADS  Google Scholar 

  27. Kuroda N, Nishina Y (1980) Solid State Commun 34:481

    Article  ADS  Google Scholar 

  28. Wu D, Pak AJ, Liu Y, Zhou Y, Wu X, Zhu Y, Lin M, Han Y, Ren Y, Peng H, Tsai Y-H, Hwang GS, Lai K (2015) Nano Lett 15:8136

    Article  ADS  Google Scholar 

  29. Schmidt P, Vialla F, Latini S, Massicotte M, Tielrooij K-J, Mastel S, Navickaite G, Danovich M, Ruiz-Tijerina DA, Yelgel C, Fal’ko V, Thygesen KS, Hillenbrand R, Koppens FHL (2018) Nat Nanotechnol 13:1035

    Article  ADS  Google Scholar 

  30. Ruiz-Tijerina DA, Danovich M, Yelgel C, Zólyomi V, Fal’ko VI (2018) Phys Rev B 98:35411

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Magorrian .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magorrian, S.J. (2019). Hybrid \(\mathbf {k\cdot p}\) Tight-Binding Theory. In: Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25715-6_3

Download citation

Publish with us

Policies and ethics