Skip to main content

Decision Process in Human-Agent Interaction: Extending Jason Reasoning Cycle

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11375))

Abstract

The main characteristic of an agent is acting on behalf of humans. Then, agents are employed as modeling paradigms for complex systems and their implementation. Today we are witnessing a growing increase in systems complexity, mainly when the presence of human beings and their interactions with the system introduces a dynamic variable not easily manageable during design phases. Design and implementation of this type of systems highlight the problem of making the system able to decide in autonomy. In this work we propose an implementation, based on Jason, of a cognitive architecture whose modules allow structuring the decision-making process by the internal states of the agents, thus combining aspects of self-modeling and theory of the mind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Details about Jason reasoning cycle are given in Sect. 4.

  2. 2.

    During the description of the reasoning cycle, we refer to Fig. 4 for the sequence of agent’s activities and Fig. 5 for the related implemented classes. In Fig. 5 both classes of the original cycle and those of the extended one (in green) are represented.

References

  1. Anderson, J.R., Matessa, M., Lebiere, C.: ACT-R: a theory of higher level cognition and its relation to visual attention. Hum. Comput. Interact. 12(4), 439–462 (1997)

    Article  Google Scholar 

  2. Andersson, J., et al.: Software engineering processes for self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 51–75. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_3

    Chapter  Google Scholar 

  3. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and run-time. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, pp. 17–22. ACM (2010)

    Google Scholar 

  4. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27 (2009). https://doi.org/10.1109/MC.2009.326

    Article  Google Scholar 

  5. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

    Article  Google Scholar 

  6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak Using Jason, vol. 8. Wiley, Chichester (2007)

    Book  Google Scholar 

  7. Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-Cognitive and Computational Model, vol. 18. Wiley, Chichester (2010)

    Book  Google Scholar 

  8. Chella, A., Lanza, F., Pipitone, A., Seidita, V.: Knowledge acquisition through introspection in human-robot cooperation. Biol. Inspired Cogn. Arch. 25, 1–7 (2018). https://doi.org/10.1016/j.bica.2018.07.016

    Article  Google Scholar 

  9. Chella, A., Lanza, F., Seidita, V.: A cognitive architecture for human-robot teaming interaction. In: Proceedings of the 6th International Workshop on Artificial Intelligence and Cognition, Palermo, 2–4 July 2018 (2018)

    Google Scholar 

  10. Chella, A., Lanza, F., Seidita, V.: Representing and developing knowledge using Jason, CArtAgO and OWL. In: Proceedings of the 19th Workshop “From Objects to Agents”, Palermo, Italy, 28–29 June 2018, pp. 147–152 (2018)

    Google Scholar 

  11. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9_1

    Chapter  Google Scholar 

  12. Christensen, W.D., Hooker, C.A., et al.: Representation and the meaning of life. In: Clapin, H. (ed.) Representation in Mind: New Approaches to Mental Representation, pp. 41–69. Elsevier, Amsterdam (2004)

    Chapter  Google Scholar 

  13. Clark, A.: Mindware: An Introduction to the Philosophy of Cognitive Science. Oxford University Press, Oxford (2000)

    Google Scholar 

  14. Franklin, S., Madl, T., D’Mello, S., Snaider, J.: LIDA: a systems-level architecture for cognition, emotion, and learning. IEEE Trans. Auton. Ment. Dev. 6(1), 19–41 (2014)

    Article  Google Scholar 

  15. Georgeff, M., Rao, A.: Rational software agents: from theory to practice. In: Jennings, N.R., Wooldridge, M.J. (eds.) Agent Technology, pp. 139–160. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03678-5_8

    Chapter  Google Scholar 

  16. Kelso, J.S.: Dynamic Patterns: The Self-organization of Brain and Behavior. MIT Press, Cambridge (1997)

    Google Scholar 

  17. Kieras, D.E., Meyer, D.E.: An overview of the epic architecture for cognition and performance with application to human-computer interaction. Hum. Comput. Interact. 12(4), 391–438 (1997)

    Article  Google Scholar 

  18. Koller, D., Friedman, N., Bach, F.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  19. Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind: toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Mag. 38(4) (2017)

    Article  Google Scholar 

  20. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: an architecture for general intelligence. Artif. Intell. 33(1), 1–64 (1987)

    Article  Google Scholar 

  21. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

    Chapter  Google Scholar 

  22. Rao, A.S., Georgeff, M.P., et al.: BDI agents: from theory to practice. In: ICMAS 1995, pp. 312–319 (1995)

    Google Scholar 

  23. Seidita, V., Cossentino, M.: From modeling to implementing the perception loop in self-conscious systems. Int. J. Mach. Conscious. 2(02), 289–306 (2010)

    Article  Google Scholar 

  24. Shanahan, M., Baars, B.: Applying global workspace theory to the frame problem. Cognition 98(2), 157–176 (2005)

    Article  Google Scholar 

  25. Stillings, N.A., Chase, C.H., Feinstein, M.H.: Cognitive Science: An Introduction. MIT Press, Cambridge (1995)

    Google Scholar 

  26. Sun, R.: The importance of cognitive architectures: an analysis based on clarion. J. Exp. Theor. Artif. Intell. 19(2), 159–193 (2007)

    Article  Google Scholar 

  27. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)

    Article  Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Seidita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chella, A., Lanza, F., Seidita, V. (2019). Decision Process in Human-Agent Interaction: Extending Jason Reasoning Cycle. In: Weyns, D., Mascardi, V., Ricci, A. (eds) Engineering Multi-Agent Systems. EMAS 2018. Lecture Notes in Computer Science(), vol 11375. Springer, Cham. https://doi.org/10.1007/978-3-030-25693-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25693-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25692-0

  • Online ISBN: 978-3-030-25693-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics