Skip to main content

Sex Differences in Aging and Associated Biomarkers

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Aging and Anti-Aging Research

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1178))

Abstract

Aging is a natural process defined by the gradual, time-dependent decline of biological and behavioural functions, for which individuals of the same chronological age show variability. The capacity of biological systems to continuously adjust for optimal functioning despite ever changing environments is essential for healthy aging, and variability in these adaptive homeostatic mechanisms may reflect such heterogeneity in the aging process. With an ever-increasing aging population, interest in biomarkers of aging is growing. Although no universally accepted definition of biomarkers of healthy aging exists, mediators of homeostasis are consistently used as measures of the aging process. As important sex differences are known to underlie many of these systems, it is imperative to consider that this may reflect, to some extent, the sex differences observed in aging and age-related disease states. This chapter aims to outline sex differences in key homeostatic domains thought to be associated with the pathophysiology of aging, often proposed as biomarkers of aging and age-related disease states. This includes considering sex-based differences and hormonal status with regards to the gonadal and adrenal endocrine systems and immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lowsky DJ, Olshansky SJ, Bhattacharya J, Goldman DP (2013) Heterogeneity in healthy aging. J Gerontol A Biol Sci Med Sci 69(6):640–649

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pomatto LCD, Davies KJA (2017) The role of declining adaptive homeostasis in aging. J Physiol 595(24):7275–7309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davies KJ (2016) Adaptive homeostasis. Mol Asp Med 49:1–7

    Article  Google Scholar 

  4. Rios FJ, Moustaid-Moussa N, Martins JO (2018) Interplay between hormones, the immune system, and metabolic disorders. Mediat Inflamm 2018:8654212. https://doi.org/10.1155/2018/8654212

    Article  CAS  Google Scholar 

  5. Lara J, Cooper R, Nissan J, Ginty AT, Khaw K-T, Deary IJ et al (2015) A proposed panel of biomarkers of healthy aging. BMC Med 13:222. https://doi.org/10.1186/s12916-015-0470-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Podcasy JL, Epperson CN (2016) Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci 18(4):437–446

    PubMed  PubMed Central  Google Scholar 

  7. Gobinath A, Choleris E, Galea L (2017) Sex, hormones, and genotype interact to influence psychiatric disease, treatment, and behavioral research. J Neurosci Res 95(1–2):50–64

    Article  CAS  PubMed  Google Scholar 

  8. Austad SN, Fischer KE (2016) Sex differences in lifespan. Cell Metab 23(6):1022–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ullah MF, Ahmad A, Bhat SH, Abu-Duhier FM, Barreto GE, Ashraf GM (2019) Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci Biobehav Rev 102:95–105

    Article  PubMed  Google Scholar 

  10. Laws KR, Irvine K, Gale TM (2018) Sex differences in Alzheimer’s disease. Curr Opin Psychiatry 31(2):133–139

    Article  PubMed  Google Scholar 

  11. Mielke MM, Vemuri P, Rocca WA (2014) Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clin Epidemiol 6:37–48

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jiao SS, Bu XL, Liu YH, Zhu C, Wang QH, Shen LL et al (2016) Sex dimorphism profile of Alzheimer’s disease-type pathologies in an APP/PS1 Mouse Model. Neurotox Res 29(2):256–266

    Article  CAS  PubMed  Google Scholar 

  13. Altmann A, Tian L, Henderson VW, Greicius MD, Alzheimer’s Disease Neuroimaging Initiative Investigators (2014) Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol 75(4):563–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jurado-Coronel JC, Cabezas R, Avila Rodriguez MF, Echeverria V, Garcia-Segura LM, Barreto GE (2018) Sex differences in Parkinson’s disease: features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front Neuroendocrinol 50:18–30

    Article  CAS  PubMed  Google Scholar 

  15. Georgiev D, Hamberg K, Hariz M, Forsgren L, Hariz GM (2017) Gender differences in Parkinson’s disease: a clinical perspective. Acta Neurol Scand 136(6):570–584

    Article  CAS  PubMed  Google Scholar 

  16. Liu R, Umbach DM, Peddada SD, Xu Z, Tröster AI, Huang X et al (2015) Potential sex differences in nonmotor symptoms in early drug-naive Parkinson disease. Neurology 84(21):2107–2115

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nugent BM, Tobet SA, Lara HE, Lucion AB, Wilson ME, Recabarren SE et al (2012) Hormonal programming across the lifespan. Horm Metab Res 44(8):577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diamanti-Kandarakis E, Dattilo M, Macut D, Duntas L, Gonos ES, Goulis DG et al (2017) MECHANISMS IN ENDOCRINOLOGY: aging and anti-aging: a combo-endocrinology overview. Eur J Endocrinol 176(6):R283–R308

    Article  CAS  PubMed  Google Scholar 

  19. Raju GAR, Chavan R, Deenadayal M, Gunasheela D, Gutgutia R, Haripriya G et al (2013) Luteinizing hormone and follicle stimulating hormone synergy: a review of role in controlled ovarian hyper-stimulation. J Hum Reprod Sci 6(4):227–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Del Río JP, Alliende MI, Molina N, Serrano FG, Molina S, Vigil P (2018) Steroid hormones and their action in women’s brains: the importance of hormonal balance. Front Public Health 6:141. https://doi.org/10.3389/fpubh.2018.00141

    Article  PubMed  PubMed Central  Google Scholar 

  21. Podfigurna A, Lukaszuk K, Czyzyk A, Kunicki M, Maciejewska-Jeske M, Jakiel G et al (2018) Testing ovarian reserve in pre-menopausal women: why, whom and how? Maturitas 109:112–117

    Article  PubMed  Google Scholar 

  22. Gill S, Sharpless JL, Rado K, Hall JE (2002) Evidence that GnRH decreases with gonadal steroid feedback but increases with age in postmenopausal women. J Clin Endocrinol Metab 87(5):2290–2296

    Article  CAS  PubMed  Google Scholar 

  23. Veldhuis JD (2013) Changes in pituitary function with ageing and implications for patient care. Nat Rev Endocrinol 9(4):205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shaw ND, Histed SN, Srouji SS, Yang J, Lee H, Hall JE (2010) Estrogen negative feedback on gonadotropin secretion: evidence for a direct pituitary effect in women. J Clin Endocrinol Metab 95(4):1955–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhatta S, Blair JA, Casadesus G (2018) Luteinizing hormone involvement in aging female cognition: not all is estrogen loss. Front Endocrinol (Lausanne) 9:544. https://doi.org/10.3389/fendo.2018.00544

    Article  Google Scholar 

  26. Muka T, Oliver-Williams C, Kunutsor S, Laven JSE, Fauser BCJM, Chowdhury R et al (2016) Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. JAMA Cardiol 1(7):767–776

    Article  PubMed  Google Scholar 

  27. Hasanpour M, Nourazarian A, Geranmayeh MH, Nikanfar M, Khaki-Khatibi F, Rahbarghazi R (2018) The dynamics of neurosteroids and sex-related hormones in the pathogenesis of Alzheimer’s disease. NeuroMolecular Med 20(2):215–224

    Article  CAS  PubMed  Google Scholar 

  28. Gurvich C, Hoy K, Thomas N, Kulkarni J (2018) Sex differences and the influence of sex hormones on cognition through adulthood and the aging process. Brain Sci 8(9). pii: E163. https://doi.org/10.3390/brainsci8090163

    Article  PubMed Central  Google Scholar 

  29. Jones CM, Boelaert K (2015) The endocrinology of aging: a mini-review. Gerontology 61(4):291–300

    Article  CAS  PubMed  Google Scholar 

  30. Camacho EM, Huhtaniemi IT, O’Neill TW, Finn JD, Pye SR, Lee DM et al (2013) Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Aging Study. Eur J Endocrinol 168(3):445–455

    Article  CAS  PubMed  Google Scholar 

  31. Lapauw B, Goemaere S, Zmierczak H, Van Pottelbergh I, Mahmoud A, Taes Y et al (2008) The decline of serum testosterone levels in community-dwelling men over 70 years of age: descriptive data and predictors of longitudinal changes. Eur J Endocrinol 159(4):459–468

    Article  CAS  PubMed  Google Scholar 

  32. Travison T, Araujo A, Kupelian V, O’Donnell A, McKinlay J, Travison T et al (2007) The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J Clin Endocrinol Metab 92(2):549–555

    Article  CAS  PubMed  Google Scholar 

  33. Derby C, Zilber S, Brambilla D, Morales K, McKinlay J, Derby C et al (2006) Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Aging Study. Clin Endocrinol 65(1):125–131

    Article  CAS  Google Scholar 

  34. Feldman H, Longcope C, Derby C, Johannes C, Araujo A, Coviello A et al (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 87(2):589–598

    Article  CAS  PubMed  Google Scholar 

  35. Wu FC, Tajar A, Beynon JM, Pye SR, Silman AJ, Finn JD et al (2010) Identification of late-onset hypogonadism in middle-aged and elderly men. New Eng J Med 363(2):123–315

    Article  CAS  PubMed  Google Scholar 

  36. Shores MM, Matsumoto AM, Sloan KL, Kivlahan DR (2006) Low serum testosterone and mortality in male veterans. Arch Intern Med 166(15):1660–1665

    Article  CAS  PubMed  Google Scholar 

  37. O’Donnell AB, Araujo AB, McKinlay JB, Kupelian V, Travison TG (2007) The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J Clin Endocrinol Metab 92(2):549–555

    Article  CAS  PubMed  Google Scholar 

  38. Matsumoto AM (2002) Andropause: clinical implications of the decline in serum testosterone levels with aging in men. J Gerontol A Biol Sci Med Sci 57(2):M76–M99

    Article  PubMed  Google Scholar 

  39. Forsberg CW, Smith NL, Shores MM, Matsumoto AM, Anawalt BD (2012) Testosterone treatment and mortality in men with low testosterone levels. J Clin Endocrinol Metab 97(6):2050–2058

    Article  CAS  PubMed  Google Scholar 

  40. Pastuszak AW, Kohn TP, Estis J, Lipshultz LI (2017) Low plasma testosterone is associated with elevated cardiovascular disease biomarkers. J Sex Med 14(9):1095–1103

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maki PM, Mordecai KL, Rubin LH, Sundermann E, Savarese A, Eatough E et al (2015) Menstrual cycle effects on cortisol responsivity and emotional retrieval following a psychosocial stressor. Horm Behav 74:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramsey JM, Cooper JD, Penninx BW, Bahn S (2016) Variation in serum biomarkers with sex and female hormonal status: implications for clinical tests. Sci Rep 6:26947. https://doi.org/10.1038/srep26947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yiallouris A, Tsioutis C, Agapidaki E, Zafeiri M, Agouridis AP, Ntourakis D et al (2019) Adrenal aging and its implications on stress responsiveness in humans. Front Endocrinol (Lausanne) 10:54. https://doi.org/10.3389/fendo.2019.00054

    Article  Google Scholar 

  44. Powrie YSL, Smith C (2018) Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: therapeutic potential? J Neuroinflammation 15(1):289. https://doi.org/10.1186/s12974-018-1324-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kroboth PD, Salek FS, Pittenger AL, Fabian TJ, Frye RF (1999) DHEA and DHEA-S: a review. J Clin Pharmacol 39(4):327–348

    Article  CAS  PubMed  Google Scholar 

  46. Miller KK, Al-Rayyan N, Ivanova MM, Mattingly KA, Ripp SL, Klinge CM et al (2013) DHEA metabolites activate estrogen receptors alpha and beta. Steroids 78(1):15–25

    Article  CAS  PubMed  Google Scholar 

  47. Webb SJ, Geoghegan TE, Prough RA, Michael Miller KK (2006) The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev 38(1–2):89–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferrari E, Cravello L, Muzzoni B, Casarotti D, Paltro M, Solerte SB et al (2001) Age-related changes of the hypothalamic-pituitary-adrenal axis: pathophysiological correlates. Eur J Endocrinol 144(4):319–329

    Article  CAS  PubMed  Google Scholar 

  49. van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ (2018) The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 6(8):647–658

    Article  PubMed  PubMed Central  Google Scholar 

  50. Voznesensky M, Walsh S, Dauser D, Brindisi J, Kenny AM (2009) The association between dehydroepiandosterone and frailty in older men and women. Age Ageing 38(4):401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rendina DN, Ryff CD, Coe CL (2017) Precipitous dehydroepiandrosterone declines reflect decreased physical vitality and function. J Gerontol A Biol Sci Med Sci 72(6):747–753

    PubMed  Google Scholar 

  52. Morrison MF, Katz IR, Parmelee P, Boyce AA, TenHave T (1998) Dehydroepiandrosterone sulfate (DHEA-S) and psychiatric and laboratory measures of frailty in a residential care population. Am J Geriatr Psychiatry 6(4):277–284

    Article  CAS  PubMed  Google Scholar 

  53. Jiménez MC, Sun Q, Schürks M, Chiuve S, Hu FB, Manson JE et al (2013) Low dehydroepiandrosterone sulfate is associated with increased risk of ischemic stroke among women. Stroke 44(7):1784–1789

    Article  CAS  PubMed  Google Scholar 

  54. Vieira-Marques C, Arbo BD, Cozer AG, Hoefel AL, Cecconello AL, Zanini P et al (2017) Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS. J Steroid Biochem Mol Biol 171:1–10

    Article  CAS  PubMed  Google Scholar 

  55. Prall SP, Muehlenbein MP (2018) DHEA modulates immune function: a review of evidence. Vitam Horm 108:125–144

    Article  PubMed  Google Scholar 

  56. Kamin HS, Kertes DA (2017) Cortisol and DHEA in development and psychopathology. Horm Behav 89:69–85

    Article  CAS  PubMed  Google Scholar 

  57. Labrie F (2010) DHEA, important source of sex steroids in men and even more in women. Prog Brain Res 182:97–148

    Article  CAS  PubMed  Google Scholar 

  58. Samaras N, Samaras D, Frangos E, Forster A, Philippe J (2013) A review of age-related dehydroepiandrosterone decline and its association with well-known geriatric syndromes: is treatment beneficial? Rejuvenation Res 16(4):285–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sulcová J, Hill M, Hampl R, Stárka L (1997) Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulphate in normal subjects. J Endocrinol 154(1):57–62

    Article  PubMed  Google Scholar 

  60. Orentreich N, Brind JL, Rizer RL, Vogelman JH (1984) Age changes and sex differences in serum Dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 59(3):551–555

    Article  CAS  PubMed  Google Scholar 

  61. Quinn TA, Robinson SR, Walker D (2018) Dehydroepiandrosterone (DHEA) and DHEA sulfate: roles in brain function and disease. In: Drevensek G (ed) Sex hormones in neurodegenerative processes and diseases. IntechOpen. ISBN-10: 1789230144

    Google Scholar 

  62. Ohlsson C, Vandenput L, Tivesten A (2015) DHEA and mortality: what is the nature of the association? J Steroid Biochem Mol Biol 145:248–253

    Article  CAS  PubMed  Google Scholar 

  63. Wudy SA, Schuler G, Sanchez-Guijo A, Hartmann MF (2018) The art of measuring steroids: principles and practice of current hormonal steroid analysis. J Steroid Biochem Mol Biol 179:88–103

    Article  CAS  PubMed  Google Scholar 

  64. Stanczyk FZ, Cho MM, Endres DB, Morrison JL, Patel S, Paulson RJ (2003) Limitations of direct estradiol and testosterone immunoassay kits. Steroids 68(14):1173–1178

    Article  CAS  PubMed  Google Scholar 

  65. El-Farhan N, Rees DA, Evans C (2017) Measuring cortisol in serum, urine and saliva - are our assays good enough? Ann Clin Biochem 54(3):308–322

    Article  CAS  PubMed  Google Scholar 

  66. Galon J, Franchimont D, Hiroi N, Frey G, Boettner A, Ehrhart-Bornstein M et al (2002) Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J 16(1):61–71

    Article  CAS  PubMed  Google Scholar 

  67. Oakley RH, Cidlowski JA (2013) The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 132(5):1033–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21(1):55–89

    CAS  PubMed  Google Scholar 

  69. Finsterwald C, Alberini CM (2014) Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiol Learn Mem 112:17–29

    Article  CAS  PubMed  Google Scholar 

  70. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R et al (2016) Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 6(2):603–621

    Article  PubMed  PubMed Central  Google Scholar 

  71. den Boon FS, Sarabdjitsingh RA (2017) Circadian and ultradian patterns of HPA-axis activity in rodents: significance for brain functionality. Best Pract Res Clin Endocrinol Metab 31(5):445–457

    Article  CAS  Google Scholar 

  72. McEwen BS, De Kloet ER, Rostene W (1986) Adrenal steroid receptors and actions in the nervous system. Physiol Rev 66(4):1121–1188

    Article  CAS  PubMed  Google Scholar 

  73. Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE (2007) The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain Cogn 65(3):209–237

    Article  CAS  PubMed  Google Scholar 

  74. Avital A, Segal M, Richter-Levin G (2006) Contrasting roles of corticosteroid receptors in hippocampal plasticity. J Neurosci 26(36):9130–9134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vyas S, Rodrigues AJ, Silva JM, Tronche F, Almeida OFX, Sousa N et al (2016) Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration. Neural Plast 2016:6391686. https://doi.org/10.1155/2016/6391686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Herman JP (2013) Neural control of chronic stress adaptation. Front Behav Neurosci 7:61. https://doi.org/10.3389/fnbeh.2013.00061

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ancelin M-L, Scali J, Norton J, Ritchie K, Dupuy A-M, Chaudieu I et al (2017) Heterogeneity in HPA axis dysregulation and serotonergic vulnerability to depression. Psychoneuroendocrinology 77:90–94

    Article  CAS  PubMed  Google Scholar 

  78. Gupta D, Morley JE (2014) Hypothalamic-pituitary-adrenal (HPA) axis and aging. Compr Physiol 4(4):1495–1510

    Article  PubMed  Google Scholar 

  79. Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M et al (2013) Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging 34(6):1662–1673

    Article  CAS  PubMed  Google Scholar 

  80. Noordam R, Jansen SWM, Akintola AA, Oei NYL, Maier AB, Pijl H et al (2012) Familial longevity is marked by lower diurnal salivary cortisol levels: the Leiden Longevity Study. PLoS One 7(2):e31166. https://doi.org/10.1371/journal.pone.0031166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weitzman ED, Fukushima D, Nogeire C, Roffwarg H, Gallagher TF, Hellman L (1971) Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab 33(1):14–22

    Article  CAS  PubMed  Google Scholar 

  82. Lupien S, Lecours AR, Lussier I, Schwartz G, Nair NP, Meaney MJ (1994) Basal cortisol levels and cognitive deficits in human aging. J Neurosci 14(5 Pt 1):2893–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Deuschle M, Gotthardt U, Schweiger U, Weber B, Korner A, Schmider J et al (1997) With aging in humans the activity of the hypothalamus-pituitary-adrenal system increases and its diurnal amplitude flattens. Life Sci 61(22):2239–2246

    Article  CAS  PubMed  Google Scholar 

  84. Almeida DM, Piazza JR, Stawski RS (2009) Interindividual differences and intraindividual variability in the cortisol awakening response: an examination of age and gender. Psychol Aging 24(4):819–827

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fardella CE, Campino C, Carvajal CA, Baudrand R, Kalergis AM, Martinez-Aguayo A et al (2013) Age-related changes in 11β-hydroxysteroid dehydrogenase type 2 activity in normotensive subjects. Am J Hypertens 26(4):481–487

    Article  CAS  PubMed  Google Scholar 

  86. Chapman K, Holmes M, Seckl J (2013) 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 93(3):1139–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. MacLullich AM, Ferguson KJ, Reid LM, Deary IJ, Starr JM, Wardlaw JM et al (2012) 11beta-hydroxysteroid dehydrogenase type 1, brain atrophy and cognitive decline. Neurobiol Aging 33(1):207.e1-8

    Article  CAS  PubMed  Google Scholar 

  88. Ennis GE, An Y, Resnick SM, Ferrucci L, O’Brien RJ, Moffat SD (2017) Long-term cortisol measures predict Alzheimer disease risk. Neurology 88(4):371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao H, Xu H, Xu X, Young D (2007) Predatory stress induces hippocampal cell death by apoptosis in rats. Neurosci Lett 421(2):115–120

    Article  CAS  PubMed  Google Scholar 

  90. Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 495(1):70–83

    Article  PubMed  Google Scholar 

  91. Rincón-Cortés M, Herman JP, Lupien S, Maguire J, Shansky RM (2019) Stress: influence of sex, reproductive status and gender. Neurobiol Stress 10:100155. https://doi.org/10.1016/j.ynstr.2019.100155

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kitay JI (1961) Enhancement of steroidogenesis by rat adrenal slices in vitro with estradiol-17-beta. Nature 192:358–359

    Article  CAS  PubMed  Google Scholar 

  93. Oyola MG, Handa RJ (2017) Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 20(5):476–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Toufexis D, Rivarola MA, Lara H, Viau V (2014) Stress and the reproductive axis. J Neuroendocrinol 26(9):573–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Handa RJ, McGivern RF (2009) Stress response: sex differences. In: Squire LR (ed) Encyclopedia of neuroscience. Academic, Oxford, pp 511–517. ISBN: 9780080446172

    Chapter  Google Scholar 

  96. Roelfsema F, Aoun P, Veldhuis JD (2016) Pulsatile cortisol feedback on ACTH secretion is mediated by the glucocorticoid receptor and modulated by gender. J Clin Endocrinol Metab 101(11):4094–4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Viau V (2002) Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J Neuroendocrinol 14(6):506–513

    Article  CAS  PubMed  Google Scholar 

  98. Kirschbaum C, Kudielka BM, Gaab J, Schommer NC, Hellhammer DH (1999) Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosom Med 61(2):154–162

    Article  CAS  PubMed  Google Scholar 

  99. Simunkova K, Stárka L, Hill M, Kríz L, Hampl R, Vondra K (2008) Comparison of total and salivary cortisol in a low-dose ACTH (Synacthen) test: influence of three-month oral contraceptives administration to healthy women. Physiol Res 57(Suppl 1):S193–S199

    CAS  PubMed  Google Scholar 

  100. Roche DJO, King AC, Cohoon AJ, Lovallo WR (2013) Hormonal contraceptive use diminishes salivary cortisol response to psychosocial stress and naltrexone in healthy women. Pharmacol Biochem Behav 109:84–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gifford RM, Reynolds RM (2017) Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans. Early Hum Dev 114:7–10

    Article  CAS  PubMed  Google Scholar 

  102. Levine A, Zagoory-Sharon O, Feldman R, Lewis JG, Weller A (2007) Measuring cortisol in human psychobiological studies. Physiol Behav 90(1):43–53

    Article  CAS  PubMed  Google Scholar 

  103. Staufenbiel S, Penninx BW, Spijker A, Elzinga BM, van Rossum E (2012) Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology 38(8):1220–1235

    Article  CAS  PubMed  Google Scholar 

  104. Novak MA, Meyer JS (2012) Minireview: hair cortisol: a novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 153(9):4120–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Noppe G, de Rijke YB, Dorst K, van den Akker ELT, van Rossum EFC (2015) LC-MS/MS-based method for long-term steroid profiling in human scalp hair. Clin Endocrinol 83(2):162–166

    Article  CAS  Google Scholar 

  106. Abell JG, Stalder T, Ferrie JE, Shipley MJ, Kirschbaum C, Kivimäki M et al (2016) Assessing cortisol from hair samples in a large observational cohort: the Whitehall II study. Psychoneuroendocrinology 73:148–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Steptoe A, Serwinski B (2016) Cortisol awakening response. In: Fink G (ed) Stress: concepts, cognition, emotion, and behavior, 1st edn. Academic, pp 277–283. ISBN-10: 0128009519

    Google Scholar 

  108. Hellhammer J, Fries E, Schweisthal OW, Schlotz W, Stone A, Hagemann D (2007) Several daily measurements are necessary to reliably assess the cortisol rise after awakening: state- and trait components. Psychoneuroendocrinology 32(1):80–86

    Article  CAS  PubMed  Google Scholar 

  109. Fujii T, Hori H, Ota M, Hattori K, Teraishi T, Sasayama D et al (2014) Effect of the common functional FKBP5 variant (rs1360780) on the hypothalamic-pituitary-adrenal axis and peripheral blood gene expression. Psychoneuroendocrinology 42:89–97

    Article  CAS  PubMed  Google Scholar 

  110. Vastbinder M, Kuindersma M, Mulder AH, Schuijt MP, Mudde AH (2016) The influence of oral contraceptives on overnight 1 mg dexamethasone suppression test. Neth J Med 74(4):158–161

    CAS  PubMed  Google Scholar 

  111. Weyand CM, Goronzy JJ (2016) Aging of the immune system. Mechanisms and therapeutic targets. Ann Am Thorac Soc 13(Suppl 5):S422–S428

    Article  PubMed  PubMed Central  Google Scholar 

  112. Eming SA, Wynn T, Martin P (2017) Inflammation and metabolism in tissue repair and regeneration. Science 356(6342):1026–1030

    Article  CAS  PubMed  Google Scholar 

  113. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33–S40

    Article  PubMed  Google Scholar 

  114. Kulkarni OP, Lichtnekert J, Anders HJ, Mulay SR (2016) The immune system in tissue environments regaining homeostasis after injury: is “inflammation” always inflammation? Mediat Inflamm 2016:2856213. https://doi.org/10.1155/2016/2856213

    Article  CAS  Google Scholar 

  115. Blach-Olszewska Z, Leszek J (2007) Mechanisms of over-activated innate immune system regulation in autoimmune and neurodegenerative disorders. Neuropsychiatr Dis Treat 3(3):365–372

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA et al (2018) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8:1960. https://doi.org/10.3389/fimmu.2017.01960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D (2018) Vaccination in the elderly: the challenge of immune changes with aging. Semin Immunol 40:83–94

    Article  PubMed  Google Scholar 

  118. Kondilis-Mangum HD, Wade PA (2013) Epigenetics and the adaptive immune response. Mol Asp Med 34(4):813–825

    Article  CAS  Google Scholar 

  119. Weinberger B, Grubeck-Loebenstein B (2012) Vaccines for the elderly. Clin Microbiol Infect 18(Suppl 5):100–108

    Article  CAS  PubMed  Google Scholar 

  120. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    Article  CAS  PubMed  Google Scholar 

  121. Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9:586. https://doi.org/10.3389/fimmu.2018.00586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jiang J, Wen W, Sachdev PS (2016) Macrophage inhibitory cytokine-1/growth differentiation factor 15 as a marker of cognitive aging and dementia. Curr Opin Psychiatry 29(2):181–186

    Article  PubMed  Google Scholar 

  124. Sullivan DH, Roberson PK, Johnson LE, Mendiratta P, Bopp MM, Bishara O (2007) Association between inflammation-associated cytokines, serum albumins, and mortality in the elderly. J Am Med Dir Assoc 8(7):458–463

    Article  PubMed  Google Scholar 

  125. Leliefeld PHC, Koenderman L, Pillay J (2015) How neutrophils shape adaptive immune responses. Front Immunol 6:471. https://doi.org/10.3389/fimmu.2015.00471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cronkite DA, Strutt TM (2016) The regulation of inflammation by innate and adaptive lymphocytes. J Immunol Res 2018:1467538. https://doi.org/10.1155/2018/1467538

    Article  CAS  Google Scholar 

  127. Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G et al (2016) Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz) 64(2):111–126

    Article  CAS  Google Scholar 

  128. Klein SL, Flanagan K (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638

    Article  CAS  PubMed  Google Scholar 

  129. Gubbels Bupp MR (2015) Sex, the aging immune system, and chronic disease. Cell Immunol 294(2):102–110

    Article  CAS  PubMed  Google Scholar 

  130. Edwards M, Dai R, Ahmed SA (2018) Our environment shapes us: the importance of environment and sex differences in regulation of autoantibody production. Front Immunol 9:478. https://doi.org/10.3389/fimmu.2018.00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jorgensen TN (2015) Sex disparities in the immune response. Cell Immunol 294(2):61–62

    Article  CAS  PubMed  Google Scholar 

  132. Kovats S (2015) Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol 294(2):63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gubbels Bupp MR, Jorgensen TN (2018) Androgen-induced immunosuppression. Front Immunol 9:794. https://doi.org/10.3389/fimmu.2018.00794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Flanagan KL, Fink AL, Plebanski M, Klein SL (2017) Sex and gender differences in the outcomes of vaccination over the life course. Annu Rev Cell Dev Biol 33:577–599

    Article  CAS  PubMed  Google Scholar 

  135. Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL, Thiebaut R et al (2014) Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci U S A 111(2):869–874

    Article  CAS  PubMed  Google Scholar 

  136. Fink AL, Klein SL (2015) Sex and gender impact immune responses to vaccines among the elderly. Physiology (Bethesda) 30(6):408–416

    CAS  Google Scholar 

  137. Hirokawa K, Utsuyama M, Hayashi Y, Kitagawa M, Makinodan T, Fulop T (2013) Slower immune system aging in women versus men in the Japanese population. Immun Ageing 10(1):19. https://doi.org/10.1186/1742-4933-10-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashri Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, N., Gurvich, C., Kulkarni, J. (2019). Sex Differences in Aging and Associated Biomarkers. In: Guest, P. (eds) Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology(), vol 1178. Springer, Cham. https://doi.org/10.1007/978-3-030-25650-0_4

Download citation

Publish with us

Policies and ethics