Skip to main content

From White to Brown – Adipose Tissue Is Critical to the Extended Lifespan and Healthspan of Growth Hormone Mutant Mice

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Aging and Anti-Aging Research

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1178))

Abstract

Growth hormone (GH) is a metabolic hormone that has major functions in the liver, muscle, and adipose tissue (AT). In the past 20 years, numerous studies have demonstrated that decreased growth hormone (GH) action is clearly linked to alterations in longevity. Therefore, it is not surprising that mechanisms underlying the extended longevity of GH-mutant animals include alterations in AT function. This Review aims to describe the basics of AT biology, GH secretion and action, and the effects of altered GH signaling in mice and humans. Lastly, this Review discusses the intersection of GH and AT, and how the influence of GH on AT may play a critical role in determining lifespan and healthspan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384(6604):33. https://doi.org/10.1038/384033a0

    Article  CAS  PubMed  Google Scholar 

  2. Steger RW, Bartke A, Cecim M (1993) Premature ageing in transgenic mice expressing different growth hormone genes. J Reprod Fertil Suppl 46:61–75

    CAS  PubMed  Google Scholar 

  3. Aguiar-Oliveira MH, Bartke A (2018) Growth hormone deficiency: health and longevity. Endocr Rev. https://doi.org/10.1210/er.2018-00216. [Epub ahead of print]

    Article  PubMed Central  Google Scholar 

  4. Bartke A, Quainoo N (2018) Impact of growth hormone-related mutations on mammalian aging. Front Genet 9:586. https://doi.org/10.3389/fgene.2018.00586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu E, Liang P, Spiegelman BM (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271(18):10697–10703

    Article  CAS  PubMed  Google Scholar 

  6. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387(6636):903–908

    Article  CAS  PubMed  Google Scholar 

  7. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312

    Article  CAS  PubMed  Google Scholar 

  8. Lynes MD, Tseng YH (2018) Deciphering adipose tissue heterogeneity. Ann N Y Acad Sci 1411(1):5–20

    Article  PubMed  Google Scholar 

  9. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4(4):263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fatty Acids 73(1):9–15

    Article  CAS  PubMed  Google Scholar 

  11. Lemoine AY, Ledoux S, Queguiner I, Calderari S, Mechler C, Msika S et al (2012) Link between adipose tissue angiogenesis and fat accumulation in severely obese subjects. J Clin Endocrinol Metab 97(5):E775–E780

    Article  CAS  PubMed  Google Scholar 

  12. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156(1–2):20–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42(1):113–116

    Article  CAS  PubMed  Google Scholar 

  14. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48(8):1600–1606

    Article  CAS  PubMed  Google Scholar 

  15. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C et al (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46(6):983–988

    Article  CAS  PubMed  Google Scholar 

  16. Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W et al (1999) Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48(5):1113–1119

    Article  CAS  PubMed  Google Scholar 

  17. Phillips DI, Caddy S, Ilic V, Fielding BA, Frayn KN, Borthwick AC et al (1996) Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism 45(8):947–950

    Article  CAS  PubMed  Google Scholar 

  18. Korenblat KM, Fabbrini E, Mohammed BS, Klein S (2008) Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134(5):1369–1375

    Article  CAS  PubMed  Google Scholar 

  19. Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S et al (2005) Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48(4):634–642

    Article  CAS  PubMed  Google Scholar 

  20. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK et al (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120(5):1183–1192

    Article  CAS  PubMed  Google Scholar 

  21. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijarvi A et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87(7):3023–3028

    Article  CAS  PubMed  Google Scholar 

  22. Ahn SG, Lim HS, Joe DY, Kang SJ, Choi BJ, Choi SY et al (2008) Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart 94(3):e7. https://doi.org/10.1136/hrt.2007.118471

    Article  PubMed  Google Scholar 

  23. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC et al (2009) Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 29(5):781–786

    Article  CAS  PubMed  Google Scholar 

  24. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117(5):605–613

    Article  PubMed  Google Scholar 

  25. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839

    Article  CAS  PubMed  Google Scholar 

  27. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M et al (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6(1):38–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cassard-Doulcier AM, Larose M, Matamala JC, Champigny O, Bouillaud F, Ricquier D (1994) In vitro interactions between nuclear proteins and uncoupling protein gene promoter reveal several putative transactivating factors including Ets1, retinoid X receptor, thyroid hormone receptor, and a CACCC box-binding protein. J Biol Chem 269(39):24335–24342

    CAS  PubMed  Google Scholar 

  29. Alvarez R, de Andres J, Yubero P, Vinas O, Mampel T, Iglesias R et al (1995) A novel regulatory pathway of brown fat thermogenesis. Retinoic acid is a transcriptional activator of the mitochondrial uncoupling protein gene. J Biol Chem 270(10):5666–5673

    Article  CAS  PubMed  Google Scholar 

  30. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    Article  CAS  PubMed  Google Scholar 

  31. Lynes MD, Tseng YH (2015) The thermogenic circuit: regulators of thermogenic competency and differentiation. Genes Dis 2(2):164–172

    Article  PubMed  PubMed Central  Google Scholar 

  32. Villarroya F, Peyrou M, Giralt M (2017) Transcriptional regulation of the uncoupling protein-1 gene. Biochimie 134:86–92

    Article  CAS  PubMed  Google Scholar 

  33. Granneman JG (1988) Norepinephrine infusions increase adenylate cyclase responsiveness in brown adipose tissue. J Pharmacol Exp Ther 245(3):1075–1080

    CAS  PubMed  Google Scholar 

  34. Marette A, Bukowiecki LJ (1991) Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. Biochem J 277(Pt 1):119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thonberg H, Lindgren EM, Nedergaard J, Cannon B (2001) As the proliferation promoter noradrenaline induces expression of ICER (induced cAMP early repressor) in proliferative brown adipocytes, ICER may not be a universal tumour suppressor. Biochem J 354(Pt 1):169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cao W, Medvedev AV, Daniel KW, Collins S (2001) beta-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem 276(29):27077–27082

    Article  CAS  PubMed  Google Scholar 

  37. Chaudhry A, Granneman JG (1999) Differential regulation of functional responses by beta-adrenergic receptor subtypes in brown adipocytes. Am J Phys 277(1):R147–R153

    CAS  Google Scholar 

  38. Granneman JG, Moore HP, Granneman RL, Greenberg AS, Obin MS, Zhu Z (2007) Analysis of lipolytic protein trafficking and interactions in adipocytes. J Biol Chem 282(8):5726–5735

    Article  CAS  PubMed  Google Scholar 

  39. Granneman JG, Moore HP, Krishnamoorthy R, Rathod M (2009) Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem 284(50):34538–34544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306(5700):1383–1386

    Article  CAS  PubMed  Google Scholar 

  41. Shabalina IG, Jacobsson A, Cannon B, Nedergaard J (2004) Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J Biol Chem 279(37):38236–38248

    Article  CAS  PubMed  Google Scholar 

  42. Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151(2):400–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293(2):E444–E452

    Article  CAS  PubMed  Google Scholar 

  45. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508

    Article  PubMed  Google Scholar 

  46. Cannon B, Nedergaard J (2011) Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol 214(Pt 2):242–253

    Article  PubMed  Google Scholar 

  47. Golozoubova V, Gullberg H, Matthias A, Cannon B, Vennstrom B, Nedergaard J (2004) Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone-binding thyroid hormone receptors. Mol Endocrinol 18(2):384–401

    Article  CAS  PubMed  Google Scholar 

  48. Mo Q, Salley J, Roshan T, Baer LA, May FJ, Jaehnig EJ et al (2017) Identification and characterization of a supraclavicular brown adipose tissue in mice. JCI Insight 2(11). pii: 93166. https://doi.org/10.1172/jci.insight.93166

  49. Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte EE (2018) Brown adipose tissue energy metabolism in humans. Front Endocrinol (Lausanne) 9:447. https://doi.org/10.3389/fendo.2018.00447

    Article  Google Scholar 

  50. Lee P, Greenfield JR, Ho KK, Fulham MJ (2010) A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 299(4):E601–E606

    Article  CAS  PubMed  Google Scholar 

  51. Hanssen MJ, Hoeks J, Brans B, van der Lans AA, Schaart G, van den Driessche JJ et al (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21(8):863–865

    Article  CAS  PubMed  Google Scholar 

  52. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163(3):643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI et al (2017) Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab 26(4):660–671.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bertholet AM, Kazak L, Chouchani ET, Bogaczynska MG, Paranjpe I, Wainwright GL et al (2017) Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab 25(4):811–822.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M et al (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23(12):1454–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME et al (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387(6628):90–94

    Article  CAS  PubMed  Google Scholar 

  57. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9(2):203–209

    Article  CAS  PubMed  Google Scholar 

  58. Ohno H, Shinoda K, Ohyama K, Sharp LZ, Kajimura S (2013) EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504(7478):163–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ et al (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156(1–2):304–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Young P, Arch JR, Ashwell M (1984) Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 167(1):10–14

    Article  CAS  PubMed  Google Scholar 

  61. Loncar D, Afzelius BA, Cannon B (1988) Epididymal white adipose tissue after cold stress in rats. I. Nonmitochondrial changes. J Ultrastruct Mol Struct Res 101(2–3):109–122

    Article  CAS  PubMed  Google Scholar 

  62. Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metab 22(4):546–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–1263

    Article  CAS  PubMed  Google Scholar 

  64. Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X et al (2014) A smooth muscle-like origin for beige adipocytes. Cell Metab 19(5):810–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vishvanath L, MacPherson KA, Hepler C, Wang QA, Shao M, Spurgin SB et al (2016) Pdgfrbeta+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab 23(2):350–359

    Article  CAS  PubMed  Google Scholar 

  66. Berry DC, Jiang Y, Graff JM (2016) Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat Commun 7:10184. https://doi.org/10.1038/ncomms10184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee YH, Petkova AP, Mottillo EP, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 15(4):480–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sanchez-Gurmaches J, Guertin DA (2014) Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun 5:4099. https://doi.org/10.1038/ncomms5099

    Article  CAS  PubMed  Google Scholar 

  69. Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19(10):1338–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298(6):E1244–E1253

    Article  CAS  PubMed  Google Scholar 

  71. Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 297(5):E977–E986

    Article  CAS  PubMed  Google Scholar 

  72. Loncar D (1991) Convertible adipose tissue in mice. Cell Tissue Res 266(1):149–161

    Article  CAS  PubMed  Google Scholar 

  73. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al (2008) Dynamics of fat cell turnover in humans. Nature 453(7196):783–787

    Article  CAS  PubMed  Google Scholar 

  74. Rigamonti A, Brennand K, Lau F, Cowan CA (2011) Rapid cellular turnover in adipose tissue. PLoS One 6(3):e17637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xue R, Lynes MD, Dreyfuss JM, Shamsi F, Schulz TJ, Zhang H et al (2015) Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med 21(7):760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cartier A, Lemieux I, Almeras N, Tremblay A, Bergeron J, Despres JP (2008) Visceral obesity and plasma glucose-insulin homeostasis: contributions of interleukin-6 and tumor necrosis factor-alpha in men. J Clin Endocrinol Metab 93(5):1931–1938

    Article  CAS  PubMed  Google Scholar 

  77. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ortega Martinez de Victoria E, Xu X, Koska J, Francisco AM, Scalise M, Ferrante AW Jr et al (2009) Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy Pima Indians. Diabetes 58(2):385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117(1):175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR (2008) Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57(12):3239–3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee BC, Kim MS, Pae M, Yamamoto Y, Eberle D, Shimada T et al (2016) Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab 23(4):685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC et al (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160(1–2):74–87

    Article  CAS  PubMed  Google Scholar 

  84. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157(6):1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF et al (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519(7542):242–246

    Article  CAS  PubMed  Google Scholar 

  86. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538):197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL et al (2017) The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med 23(5):631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Asano A, Kimura K, Saito M (1999) Cold-induced mRNA expression of angiogenic factors in rat brown adipose tissue. J Vet Med Sci 61(4):403–409

    Article  CAS  PubMed  Google Scholar 

  89. Nisoli E, Tonello C, Briscini L, Carruba MO (1997) Inducible nitric oxide synthase in rat brown adipocytes: implications for blood flow to brown adipose tissue. Endocrinology 138(2):676–682

    Article  CAS  PubMed  Google Scholar 

  90. Nisoli E, Tonello C, Benarese M, Liberini P, Carruba MO (1996) Expression of nerve growth factor in brown adipose tissue: implications for thermogenesis and obesity. Endocrinology 137(2):495–503

    Article  CAS  PubMed  Google Scholar 

  91. Nechad M, Ruka E, Thibault J (1994) Production of nerve growth factor by brown fat in culture: relation with the in vivo developmental stage of the tissue. Comp Biochem Physiol Comp Physiol 107(2):381–388

    Article  CAS  PubMed  Google Scholar 

  92. Yamashita H, Sato Y, Kizaki T, Oh S, Nagasawa J, Ohno H (1994) Basic fibroblast growth factor (bFGF) contributes to the enlargement of brown adipose tissue during cold acclimation. Pflugers Arch 428(3–4):352–356

    Article  CAS  PubMed  Google Scholar 

  93. Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B (2013) Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology 154(8):2687–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T et al (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286(15):12983–12990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, Naumann J et al (2016) Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun 7:11420. https://doi.org/10.1038/ncomms11420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Villarroya F, Cereijo R, Villarroya J, Giralt M (2017) Brown adipose tissue as a secretory organ. Nat Rev Endocrinol 13(1):26–35

    Article  CAS  PubMed  Google Scholar 

  97. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H et al (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9(5):667–684

    Article  CAS  PubMed  Google Scholar 

  98. Visser M, Pahor M, Tylavsky F, Kritchevsky SB, Cauley JA, Newman AB et al (2003) One- and two-year change in body composition as measured by DXA in a population-based cohort of older men and women. J Appl Physiol (1985) 94(6):2368–2374

    Article  Google Scholar 

  99. Raguso CA, Kyle U, Kossovsky MP, Roynette C, Paoloni-Giacobino A, Hans D et al (2006) A 3-year longitudinal study on body composition changes in the elderly: role of physical exercise. Clin Nutr 25(4):573–580

    Article  PubMed  Google Scholar 

  100. Bertrand HA, Lynd FT, Masoro EJ, Yu BP (1980) Changes in adipose mass and cellularity through the adult life of rats fed ad libitum or a life-prolonging restricted diet. J Gerontol 35(6):827–835

    Article  CAS  PubMed  Google Scholar 

  101. Yu BP, Masoro EJ, Murata I, Bertrand HA, Lynd FT (1982) Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J Gerontol 37(2):130–141

    Article  CAS  PubMed  Google Scholar 

  102. Kirkland JL, Dax EM (1984) Adipocyte hormone responsiveness and aging in the rat: problems in the interpretation of aging research. J Am Geriatr Soc 32(3):219–228

    Article  CAS  PubMed  Google Scholar 

  103. Yki-Jarvinen H, Kiviluoto T, Nikkila EA (1986) Insulin binding and action in adipocytes in vitro in relation to insulin action in vivo in young and middle-aged subjects. Acta Endocrinol 113(1):88–92

    Article  CAS  Google Scholar 

  104. Morin CL, Pagliassotti MJ, Windmiller D, Eckel RH (1997) Adipose tissue-derived tumor necrosis factor-alpha activity is elevated in older rats. J Gerontol A Biol Sci Med Sci 52(4):B190–B195

    Article  CAS  PubMed  Google Scholar 

  105. Starr ME, Evers BM, Saito H (2009) Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. J Gerontol A Biol Sci Med Sci 64(7):723–730

    Article  CAS  PubMed  Google Scholar 

  106. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr et al (1999) Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 106(5):506–512

    Article  CAS  PubMed  Google Scholar 

  107. Karagiannides I, Tchkonia T, Dobson DE, Steppan CM, Cummins P, Chan G et al (2001) Altered expression of C/EBP family members results in decreased adipogenesis with aging. Am J Physiol Regul Integr Comp Physiol 280(6):R1772–R1780

    Article  CAS  PubMed  Google Scholar 

  108. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60(5):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma X, Xu L, Gavrilova O, Mueller E (2014) Role of forkhead box protein A3 in age-associated metabolic decline. Proc Natl Acad Sci U S A 111(39):14289–14294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pirzgalska RM, Seixas E, Seidman JS, Link VM, Sanchez NM, Mahu I et al (2017) Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat Med 23(11):1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Muller EE (1990) Clinical implications of growth hormone feedback mechanisms. Horm Res 33(Suppl 4):90–96

    PubMed  Google Scholar 

  112. Muller AF, Lamberts SW, Janssen JA, Hofland LJ, Koetsveld PV, Bidlingmaier M et al (2002) Ghrelin drives GH secretion during fasting in man. Eur J Endocrinol 146(2):203–207

    Article  CAS  PubMed  Google Scholar 

  113. Pombo M, Pombo CM, Astorga R, Cordido F, Popovic V, Garcia-Mayor RV et al (1999) Regulation of growth hormone secretion by signals produced by the adipose tissue. J Endocrinol Investig 22(5 Suppl):22–26

    CAS  Google Scholar 

  114. Carro E, Senaris R, Considine RV, Casanueva FF, Dieguez C (1997) Regulation of in vivo growth hormone secretion by leptin. Endocrinology 138(5):2203–2206

    Article  CAS  PubMed  Google Scholar 

  115. Green H, Morikawa M, Nixon T (1985) A dual effector theory of growth-hormone action. Differentiation 29(3):195–198

    Article  CAS  PubMed  Google Scholar 

  116. Brown RJ, Adams JJ, Pelekanos RA, Wan Y, McKinstry WJ, Palethorpe K et al (2005) Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat Struct Mol Biol 12(9):814–821

    Article  CAS  PubMed  Google Scholar 

  117. Wells JA (1996) Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A 93(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brooks AJ, Waters MJ (2010) The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol 6(9):515–525

    Article  CAS  PubMed  Google Scholar 

  119. Jenkins PJ (2006) Cancers associated with acromegaly. Neuroendocrinology 83(3–4):218–223

    Article  CAS  PubMed  Google Scholar 

  120. Rogozinski A, Furioso A, Glikman P, Junco M, Laudi R, Reyes A et al (2012) Thyroid nodules in acromegaly. Arq Bras Endocrinol Metabol 56(5):300–304

    Article  PubMed  Google Scholar 

  121. Rokkas T, Pistiolas D, Sechopoulos P, Margantinis G, Koukoulis G (2008) Risk of colorectal neoplasm in patients with acromegaly: a meta-analysis. World J Gastroenterol 14(22):3484–3489

    Article  PubMed  PubMed Central  Google Scholar 

  122. Abreu A, Tovar AP, Castellanos R, Valenzuela A, Giraldo CM, Pinedo AC et al (2016) Challenges in the diagnosis and management of acromegaly: a focus on comorbidities. Pituitary 19(4):448–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Holdaway IM, Bolland MJ, Gamble GD (2008) A meta-analysis of the effect of lowering serum levels of GH and IGF-I on mortality in acromegaly. Eur J Endocrinol 159(2):89–95

    Article  CAS  PubMed  Google Scholar 

  124. Melmed S (2009) Acromegaly pathogenesis and treatment. J Clin Invest 119(11):3189–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mullis PE (2007) Genetics of growth hormone deficiency. Endocrinol Metab Clin N Am 36(1):17–36

    Article  CAS  Google Scholar 

  126. Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT (2014) Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 35(3):376–432

    Article  CAS  PubMed  Google Scholar 

  127. Laron Z, Blum W, Chatelain P, Ranke M, Rosenfeld R, Savage M et al (1993) Classification of growth hormone insensitivity syndrome. J Pediatr 122(2):241

    Article  CAS  PubMed  Google Scholar 

  128. Laron Z, Pertzelan A, Karp M (1962) Pituitary dwarfism with high serum levels of growth hormone. Isr J Med Sci 4(4):883–894

    Google Scholar 

  129. Shevah O, Laron Z (2007) Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Hormon IGF Res 17(1):54–57

    Article  CAS  Google Scholar 

  130. Steuerman R, Shevah O, Laron Z (2011) Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol 164(4):485–489

    Article  CAS  PubMed  Google Scholar 

  131. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3(70):70ra13. https://doi.org/10.1126/scitranslmed.3001845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Laron Z, Kauli R (2016) Fifty seven years of follow-up of the Israeli cohort of Laron Syndrome patients-From discovery to treatment. Growth Hormon IGF Res 28:53–56

    Article  Google Scholar 

  133. Agladioglu SY, Cetinkaya S, Savas Erdeve S, Onder A, Kendirci HN, Bas VN et al (2013) Diabetes mellitus with Laron syndrome: case report. J Pediatr Endocrinol Metab 26(9–10):955–958

    PubMed  Google Scholar 

  134. Kopchick JJ, Bellush LL, Coschigano KT (1999) Transgenic models of growth hormone action. Annu Rev Nutr 19:437–461

    Article  CAS  PubMed  Google Scholar 

  135. Kopchick JJ, List EO, Kelder B, Gosney ES, Berryman DE (2014) Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol 386(1–2):34–45

    Article  CAS  PubMed  Google Scholar 

  136. Miquet JG, Freund T, Martinez CS, Gonzalez L, Diaz ME, Micucci GP et al (2003) Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone. Cell Cycle 12(7):1042–1057

    Article  CAS  Google Scholar 

  137. Bartke A (2003) Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology 78(4):210–216

    Article  CAS  PubMed  Google Scholar 

  138. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM et al (1996) Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384(6607):327–333

    Article  CAS  PubMed  Google Scholar 

  139. Snell GD (1929) Dwarf, a new mendelian recessive character of the house mouse. Proc Natl Acad Sci U S A 15(9):733–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bartke A (1965) Influence of luteotrophin on fertility of dwarf mice. J Reprod Fertil 10:93–103

    Article  CAS  PubMed  Google Scholar 

  141. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A 98(12):6736–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A (2003) Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci 58(4):291–296

    Article  PubMed  Google Scholar 

  143. Wiesenborn DS, Ayala JE, King E, Masternak MM (2014) Insulin sensitivity in long-living Ames dwarf mice. Age (Dordr) 36(5):9709

    Article  CAS  Google Scholar 

  144. Heiman ML, Tinsley FC, Mattison JA, Hauck S, Bartke A (2003) Body composition of prolactin-, growth hormone, and thyrotropin-deficient Ames dwarf mice. Endocrine 20(1–2):149–154

    Article  CAS  PubMed  Google Scholar 

  145. Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M et al (1997) A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A 94(24):13215–13220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141(7):2608–2613

    Article  CAS  PubMed  Google Scholar 

  147. Kinney BA, Coschigano KT, Kopchick JJ, Steger RW, Bartke A (2001) Evidence that age-induced decline in memory retention is delayed in growth hormone resistant GH-R-KO (Laron) mice. Physiol Behav 72(5):653–660

    Article  CAS  PubMed  Google Scholar 

  148. Kinney-Forshee BA, Kinney NE, Steger RW, Bartke A (2004) Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav 80(5):589–594

    Article  CAS  PubMed  Google Scholar 

  149. Ikeno Y, Hubbard GB, Lee S, Cortez LA, Lew CM, Webb CR et al (2009) Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 64(5):522–529

    Article  CAS  PubMed  Google Scholar 

  150. Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, DiGirolamo DJ et al (2009) Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. J Biol Chem 284(30):19937–19944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. List EO, Berryman DE, Funk K, Jara A, Kelder B, Wang F et al (2014) Liver-specific GH receptor gene-disrupted (LiGHRKO) mice have decreased endocrine IGF-I, increased local IGF-I, and altered body size, body composition, and adipokine profiles. Endocrinology 155(5):1793–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vijayakumar A, Wu Y, Buffin NJ, Li X, Sun H, Gordon RE et al (2012) Skeletal muscle growth hormone receptor signaling regulates basal, but not fasting-induced, lipid oxidation. PLoS One 7(9):e44777. https://doi.org/10.1371/journal.pone.0044777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wu Y, Liu C, Sun H, Vijayakumar A, Giglou PR, Qiao R et al (2011) Growth hormone receptor regulates beta cell hyperplasia and glucose-stimulated insulin secretion in obese mice. J Clin Invest 121(6):2422–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. List EO, Berryman DE, Funk K, Gosney ES, Jara A, Kelder B et al (2013) The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice. Mol Endocrinol 27(3):524–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee KY, Russell SJ, Ussar S, Boucher J, Vernochet C, Mori MA et al (2013) Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 62(3):864–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Krueger KC, Costa MJ, Du H, Feldman BJ (2014) Characterization of Cre recombinase activity for in vivo targeting of adipocyte precursor cells. Stem Cell Rep 3(6):1147–1158

    Article  CAS  Google Scholar 

  157. List EO, Berryman DE, Buchman M, Parker C, Funk K, Bell S et al (2019) Adipocyte-specific gh receptor-null (AdGHRKO) mice have enhanced insulin sensitivity with reduced liver triglycerides. Endocrinology 160(1):68–80

    Article  PubMed  Google Scholar 

  158. Sun LY, Fang Y, Patki A, Koopman JJ, Allison DB, Hill CM et al (2017) Longevity is impacted by growth hormone action during early postnatal period. elife 6:pii: e24059. https://doi.org/10.7554/eLife.24059

    Article  Google Scholar 

  159. Bartke A (2019) Growth hormone and aging: updated review. World J Mens Health 37(1):19–30

    Article  PubMed  Google Scholar 

  160. Masternak MM, Darcy J, Victoria B, Bartke A (2018) Dwarf mice and aging. Prog Mol Biol Transl Sci 155:69–83

    Article  PubMed  Google Scholar 

  161. Blackburn A, Schmitt A, Schmidt P, Wanke R, Hermanns W, Brem G et al (1997) Actions and interactions of growth hormone and insulin-like growth factor-II: body and organ growth of transgenic mice. Transgenic Res 6(3):213–222

    Article  CAS  PubMed  Google Scholar 

  162. Olsson B, Bohlooly YM, Fitzgerald SM, Frick F, Ljungberg A, Ahren B et al (2005) Bovine growth hormone transgenic mice are resistant to diet-induced obesity but develop hyperphagia, dyslipidemia, and diabetes on a high-fat diet. Endocrinology 146(2):920–930

    Article  CAS  PubMed  Google Scholar 

  163. Palmer AJ, Chung MY, List EO, Walker J, Okada S, Kopchick JJ et al (2009) Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology 150(3):1353–1360

    Article  CAS  PubMed  Google Scholar 

  164. Katznelson L (2009) Alterations in body composition in acromegaly. Pituitary 12(2):136–142

    Article  CAS  PubMed  Google Scholar 

  165. Berryman DE, List EO, Coschigano KT, Behar K, Kim JK, Kopchick JJ (2004) Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Hormon IGF Res 14(4):309–318

    Article  CAS  Google Scholar 

  166. Berryman DE, List EO, Palmer AJ, Chung MY, Wright-Piekarski J, Lubbers E et al (2010) Two-year body composition analyses of long-lived GHR null mice. J Gerontol A Biol Sci Med Sci 65(1):31–40

    Article  CAS  PubMed  Google Scholar 

  167. Bonkowski MS, Pamenter RW, Rocha JS, Masternak MM, Panici JA, Bartke A (2006) Long-lived growth hormone receptor knockout mice show a delay in age-related changes of body composition and bone characteristics. J Gerontol A Biol Sci Med Sci 61(6):562–567

    Article  PubMed  Google Scholar 

  168. Berryman DE, List EO, Kohn DT, Coschigano KT, Seeley RJ, Kopchick JJ (2006) Effect of growth hormone on susceptibility to diet-induced obesity. Endocrinology 147(6):2801–2808

    Article  CAS  PubMed  Google Scholar 

  169. Stout MB, Tchkonia T, Pirtskhalava T, Palmer AK, List EO, Berryman DE et al (2014) Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Albany NY) 6(7):575–586

    Article  Google Scholar 

  170. Reyes-Vidal CM, Mojahed H, Shen W, Jin Z, Arias-Mendoza F, Fernandez JC et al (2015) Adipose tissue redistribution and ectopic lipid deposition in active acromegaly and effects of surgical treatment. J Clin Endocrinol Metab 100(8):2946–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang Z, Al-Regaiey KA, Masternak MM, Bartke A (2006) Adipocytokines and lipid levels in Ames dwarf and calorie-restricted mice. J Gerontol A Biol Sci Med Sci 61(4):323–331

    Article  PubMed  Google Scholar 

  172. Troike KM, Henry BE, Jensen EA, Young JA, List EO, Kopchick JJ et al (2017) Impact of growth hormone on regulation of adipose tissue. Compr Physiol 7(3):819–840

    Article  PubMed  Google Scholar 

  173. Menon V, Zhi X, Hossain T, Bartke A, Spong A, Gesing A et al (2014) The contribution of visceral fat to improved insulin signaling in Ames dwarf mice. Aging Cell 13(3):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Masternak MM, Bartke A, Wang F, Spong A, Gesing A, Fang Y et al (2012) Metabolic effects of intra-abdominal fat in GHRKO mice. Aging Cell 11(1):73–81

    Article  CAS  PubMed  Google Scholar 

  175. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24(8):1246–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Li Y, Knapp JR, Kopchick JJ (2003) Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice. Exp Biol Med (Maywood) 228(2):207–215

    Article  CAS  Google Scholar 

  177. Darcy J, McFadden S, Fang Y, Huber JA, Zhang C, Sun LY et al (2016) Brown adipose tissue function is enhanced in long-lived, male Ames dwarf mice. Endocrinology 157(12):4744–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Westbrook R, Bonkowski MS, Strader AD, Bartke A (2009) Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J Gerontol A Biol Sci Med Sci 64(4):443–451

    Article  CAS  PubMed  Google Scholar 

  179. Darcy J, McFadden S, Fang Y, Berryman DE, List EO, Milcik N et al (2018) Increased environmental temperature normalizes energy metabolism outputs between normal and Ames dwarf mice. Aging (Albany NY) 10(10):2709–2722

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely apologize to those whose work we did not reference due to space limitations or inadvertent omissions. This work was supported by the US National Institutes of Health (NIH) grants DK007260 (to JD), and AG019899 and AG051869 (to AB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Darcy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darcy, J., Bartke, A. (2019). From White to Brown – Adipose Tissue Is Critical to the Extended Lifespan and Healthspan of Growth Hormone Mutant Mice. In: Guest, P. (eds) Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology(), vol 1178. Springer, Cham. https://doi.org/10.1007/978-3-030-25650-0_11

Download citation

Publish with us

Policies and ethics