Skip to main content

Novel Therapeutics in the Management of Waldenström Macroglobulinemia

  • Chapter
  • First Online:
Novel Therapeutics for Rare Lymphomas

Abstract

Waldenström macroglobulinemia (WM) is an indolent B-cell lymphoproliferative disorder characterized by the presence of an IgM monoclonal protein. For many years, treatment of this disease has included rituximab-based therapies, but recent advances, such as the discovery of MYD88 and CXCR4 mutations, have led to improvements in diagnosis, prognostication, and treatment. Better understanding of the pathophysiology of WM has enabled the development of many more targeted therapies that are better tolerated and potentially more effective options for patients with this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waldenström J. Incipient myelomatosis of “essential” hyperglobulinemia with fibrinogenopenia – a new syndrome? Acta Med Scand. 1944;117(3–4):216–47.

    Google Scholar 

  2. Wang H, Chen Y, Li F, Delasalle K, Wang J, Alexanian R, et al. Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large population-based study. Cancer. 2012;118(15):3793–800.

    Article  PubMed  Google Scholar 

  3. Treon SP, Hunter ZR, Aggarwal A, Ewen EP, Masota S, Lee C, et al. Characterization of familial Waldenström’s macroglobulinemia. Ann Oncol. 2006;17(3):488–94.

    Article  CAS  PubMed  Google Scholar 

  4. Stone M, Merlini G, Pascual V. Autoantibody activity in Waldenstrom’s macroglobulinemia. Clin Lymphoma. 2005;5(4):225–9.

    Article  CAS  PubMed  Google Scholar 

  5. Thakral B, Kanagal-Shamanna R. Systemic AL amyloidosis associated with Waldestrom macroglobulinemia: an unusual presenting complication. Blood. 2016;127(1):168.

    Article  CAS  PubMed  Google Scholar 

  6. Minnema MC, Kimby E, D’Sa S, Fornecker L-M, Poulain S, Snijders TJ, et al. Guideline for the diagnosis, treatment and response criteria for Bing-Neel syndrome. Haematologica. 2017;102(1):43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp P, McMaster M, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30(2):110–5.

    Article  PubMed  Google Scholar 

  8. Castillo JJ, Jurczyszyn A, Brozova L, Crusoe E, Czepiel J, Davila J, et al. IgM myeloma: a multicenter retrospective study of 134 patients. Am J Hematol. 2017;92(8):746–51.

    Article  CAS  PubMed  Google Scholar 

  9. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.

    Article  CAS  PubMed  Google Scholar 

  10. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.

    Article  CAS  PubMed  Google Scholar 

  11. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom. Blood. 2014;123(18):2791–7.

    Article  CAS  PubMed  Google Scholar 

  12. Castillo JJ, Gustine J, Meid K, Dubeau T, Severns P, Xu L, et al. Low levels of von Willebrand markers associate with high serum IgM levels and improve with response to therapy, in patients with Waldenström macroglobulinaemia. Br J Haematol. 2019;184(6):1011–4.

    Article  PubMed  Google Scholar 

  13. Ghobrial IM, Fonseca R, Gertz MA, Plevak MF, Larson DR, Therneau TM, et al. Prognostic model for disease-specific and overall mortality in newly diagnosed symptomatic patients with Waldenstrom macroglobulinaemia. Br J Haematol. 2006;133(2):158–64.

    Article  PubMed  Google Scholar 

  14. Castillo JJ, Olszewski AJ, Kanan S, Meid K, Hunter ZR, Treon SP. Overall survival and competing risks of death in patients with Waldenström macroglobulinaemia: an analysis of the surveillance, epidemiology and end results database. Br J Haematol. 2015;169(1):81–9.

    Article  PubMed  Google Scholar 

  15. Morel P, Duhamel A, Gobbi P, Dimopoulos M, Dhodapkar M, McCoy J, et al. International prognostic scoring system (IPSS) for Waldenström’s macroglobulinemia (WM). Blood. 2006;108:127.

    Google Scholar 

  16. Treon SP, Gustine J, Xu L, Manning RJ, Tsakmaklis N, Demos M, et al. MYD88 wild-type Waldenstrom macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival. Br J Haematol. 2018;180(3):374–80.

    Article  CAS  PubMed  Google Scholar 

  17. Treon SP, Meid K, Gustine J, Bantilan KS, Dubeau T, Severns P, et al. Long-term follow-up of previously treated patients who received ibrutinib for symptomatic Waldenstrom’s macroglobulinemia: update of pivotal clinical trial. Blood. 2017;130:2766.

    Google Scholar 

  18. Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.

    Article  CAS  PubMed  Google Scholar 

  19. Castillo JJ, Meid K, Gustine JN, Dubeau T, Severns P, Hunter ZR, et al. Prospective clinical trial of ixazomib, dexamethasone and rituximab as primary therapy in Waldenström macroglobulinemia. Clin Cancer Res. 2018;24:3247–52.

    Article  CAS  PubMed  Google Scholar 

  20. Treon SP, Meid K, Tripsas C, Heffner LT, Eradat H, Badros AZ, et al. Prospective, multicenter clinical trial of everolimus as primary therapy in Waldenstrom macroglobulinemia (WMCTG 09-214). Clin Cancer Res. 2017;23(10):2400–4.

    Article  CAS  PubMed  Google Scholar 

  21. Kyle R, Treon S, Alexanian R, Barlogie B, Björkholm M, Dhodapkar M, et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30(2):116–20.

    Article  PubMed  Google Scholar 

  22. Gustine JN, Meid K, Dubeau T, Hunter ZR, Xu L, Yang G, et al. Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenström macroglobulinaemia. Br J Haematol. 2017;177(5):717–25.

    Article  CAS  PubMed  Google Scholar 

  23. Leblond V, Kastritis E, Advani R, Ansell S, Buske C, Castillo J, et al. Treatment recommendations from the Eighth International Workshop on Waldenstrom’s macroglobulinemia. Blood. 2016;128(10):1321–9.

    Article  CAS  PubMed  Google Scholar 

  24. Castillo JJ, Gustine JN, Meid K, Dubeau TE, Severns P, Xu L, et al. Response and survival for primary therapy combination regimens and maintenance rituximab in Waldenström macroglobulinaemia. Br J Haematol. 2018;181(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  25. Tedeschi A, Picardi P, Ferrero S, Benevolo G, Margiotta Casaluci G, Varettoni M, et al. Bendamustine and rituximab combination is safe and effective as salvage regimen in Waldenström macroglobulinemia. Leuk Lymphoma. 2015;56(9):2637–42.

    Article  PubMed  CAS  Google Scholar 

  26. Rummel MJ, Niederle N, Maschmeyer G, Banat GA, Von Grünhagen U, Losem C, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381(9873):1203–10.

    Article  CAS  PubMed  Google Scholar 

  27. Dimopoulos MA, Gavriatopoulou M, Morel P, Kyrtsonis M, Michalis E, Kartasis Z, et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR). Blood. 2013;122(19):3276–82.

    Article  CAS  PubMed  Google Scholar 

  28. Ghobrial IM, Xie W, Padmanabhan S, Badros A, Rourke M, Leduc R, et al. Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenström macroglobulinemia. Am J Hematol. 2010;85(9):670–4.

    Article  CAS  PubMed  Google Scholar 

  29. Treon SP, Ioakimidis L, Soumerai JD, Patterson CJ, Sheehy P, Nelson M, et al. Primary therapy of Waldenström macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol. 2009;27(23):3830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Treon SP, Tripsas CK, Meid K, Kanan S, Sheehy P, Chuma S, et al. Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers’s a neuropathy-sparing approach for treating Waldenstrom macroglobulinemia. Blood. 2014;124(4):503–10.

    Article  CAS  PubMed  Google Scholar 

  31. Meid K, Dubeau T, Severns P, Gustine J, Ghobria IM, Castillo JJ, et al. Long-term follow-up of a prospective clinical trial of carfilzomib, rituximab and dexamethasone (CaRD) in Waldenstrom’s macroglobulinemia. Blood. 2017;130:2772.

    Google Scholar 

  32. Kastritis E, Gavriatopoulou M, Kyrtsonis M, Roussou M, Hadjiharissi E, Symeonidis A, et al. Dexamethasone, rituximab, and cyclophosphamide as primary treatment of Waldenstrom macroglobulinemia: final analysis of a phase 2 study. Blood. 2015;126(11):1392–4.

    Article  PubMed  Google Scholar 

  33. Paludo J, Abeykoon JP, Kumar S, Shreders A, Ailawadhi S, Gertz MA, et al. Dexamethasone, rituximab and cyclophosphamide for relapsed and/or refractory and treatment-naïve patients with Waldenstrom macroglobulinemia. Br J Haematol. 2017;179(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  34. Olszewski AJ, Treon SP, Castillo JJ. Evolution of management and outcomes in Waldenström macroglobulinemia: a population-based analysis. Oncologist. 2016;21(11):1377–86.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dimopoulos M, Zervas C, Zomas A, Hamilos G, Gika D, Efstthiou E, et al. Extended rituximab therapy for previously untreated patients with Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2002;3(3):163–6.

    Article  CAS  Google Scholar 

  36. Gertz MA, Abonour R, Heffner LT, Greipp PR, Uno H, Rajkumar SV. Clinical value of minor responses after 4 doses of rituximab in Waldenström macroglobulinaemia: a follow-up of the eastern cooperative oncology group E3A98 trial. Br J Haematol. 2009;147(5):677–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Treon SP, Hanzis C, Manning RJ, Ioakimidis L, Patterson CJ, Hunter ZR, et al. Maintenance rituximab is associated with improved clinical outcome in rituximab naïve patients with Waldenstrom macroglobulinaemia who respond to a rituximab-containing regimen. Br J Haematol. 2011;154(3):357–62.

    Article  CAS  PubMed  Google Scholar 

  38. Dimopoulos MA, Trotman J, Tedeschi A, Matous JV, Macdonald D, Tam C, et al. Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18(2):241–50.

    Article  CAS  PubMed  Google Scholar 

  39. Treon SP, Gustine J, Meid K, Dubeau T, Severns P, Patterson C, et al. Ibrutinib is highly active as first line therapy in symptomatic Waldenstrom’s macroglobulinemia. Blood. 2017;130:2767.

    Google Scholar 

  40. Leblond V, Johnson S, Chevret S, Copplestone A, Rule S, Tournilhac O, et al. Results of a randomized trial of chlorambucil versus fludarabine for patients with untreated Waldenström macroglobulinemia, marginal zone lymphoma, or lymphoplasmacytic lymphoma. J Clin Oncol. 2013;31(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  41. Roccaro AM, Sacco A, Jia X, Banwait R, Maiso P, Azab F, et al. Mechanisms of activity of the TORC1 inhibitor everolimus in Waldenstrom macroglobulinemia. Clin Cancer Res. 2012;18(24):6609–22.

    Article  CAS  PubMed  Google Scholar 

  42. Treon SP, Soumerai JD, Branagan AR, Hunter ZR, Patterson CJ, Ioakimidis L, et al. Thalidomide and rituximab in Waldenstrom macroglobulinemia. Blood. 2008;112(12):4452–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dimopoulos M, Tsatalas C, Zomas A, Hamilos G, Panayiotidis P, Margaritis D, et al. Treatment of Waldenstrom’s macroglobulinemia with single-agent thalidomide or with the combination of clarithromycin, thalidomide and dexamethasone. Semin Oncol. 2003;30(2):265–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kyriakou C, Canals C, Cornelissen JJ, Socié G, Willemze R, Ifrah N, et al. Allogeneic stem-cell transplantation in patients with waldenström macroglobulinemia: report from the lymphoma working party of the european group for blood and marrow transplantation. J Clin Oncol. 2010;28(33):4926–34.

    Article  PubMed  Google Scholar 

  45. Kyriakou C, Canals C, Sibon D, Cahn JY, Kazmi M, Arcese W, et al. High-dose therapy and autologous stem-cell transplantation in Waldenström macroglobulinemia: the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol. 2010;28(13):2227–32.

    Article  CAS  PubMed  Google Scholar 

  46. Cornell RF, Bachanova V, D’Souza A, Woo-Ahn K, Martens M, Huang J, et al. Allogeneic transplantation for relapsed Waldenström macroglobulinemia and lymphoplasmacytic lymphoma. Biol Blood Marrow Transplant. 2017;23(1):60–6.

    Article  PubMed  Google Scholar 

  47. Kyriakou C, Advani R, Ansell S, Buske C, Castillo J, Dreger P, et al. Indications for hematopoietic stem cell transplantation in patients with Waldenstrom’s macroglobulinemia: a consensus project of the EBMT Lymphoma Working Party (LWP)/ European Consortium for Waldenstrom’s Macroglobulinemia (ECWM)/International Waldenstrom. Blood. 2017;130:2026.

    Google Scholar 

  48. Paulus A, Manna A, Akhtar S, Singh N, Kumar A, Basu K, et al. The Oral proteasome inhibitor ixazomib, alone and in combination with ibrutinib, induces lethality in Waldenstrom macroglobulinemia cells that are resistant to ibrutinib. Blood. 2017;130:1260.

    Google Scholar 

  49. Chauhan D, Singh AV, Aujay M, Kirk CJ, Bandi M, Ciccarelli B, et al. A novel orally active proteasome inhibitor ONX 0912 trigger in vitro and in vivo cytotoxicity in multiple myeloma. Blood. 2010;116(23):4906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Siegel D, Kaufman J, Raje N, Mikhael J, Kapoor P, Treon S, et al. Updated results from a multicenter, open-label, dose-escalation phase 1b/2 study of single-agent oprozomib in patients with Waldenström macroglobulinemia (WM). Blood. 2014;124:1715.

    Article  Google Scholar 

  51. Furman R, Eradat H, DiRienzo C, Hofmeister C, Haymnan S, Leonard J, et al. A phase 2 study of ofatumumab in Waldenström’s macroglobulinaemia. Lancet Haematol. 2017;4(1):e24–34.

    Article  PubMed  Google Scholar 

  52. Castillo J, Kanan S, Meid K, Manning R, Hunter Z, Treon S. Rituximab intolerance in patients with Waldenstrom macroglobulinaemia. Br J Haematol. 2016;174:631–57.

    Article  Google Scholar 

  53. Waldenstrom’s Macroglobulinemia/Lymphoplasmacytic Lymphoma. National Comprehensive Cancer Network. 2018. https://www.nccn.org/professionals/physician_gls/p.

  54. Kashyap MK, Kumar D, Jones H, Amaya-Chanaga CI, Choi MY, Melo-Cardenas J, et al. Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget. 2016;7(3):2809–22.

    Article  PubMed  Google Scholar 

  55. Owen R, McCarthy H, Rule S, D’Sa S, Thomas S, Forconi F, et al. Acalabrutinib in patients with Waldenstrom macroglobulinemia. EHA Learn Cent. 2018:S853.

    Google Scholar 

  56. Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–32.

    Article  CAS  PubMed  Google Scholar 

  57. Tam C, Grigg A, Opat S, Ku M, Gilbertson M, Anderson M, et al. The BTK inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/ refractory B-cell malignancies: initial report of a phase 1 first-in-human trial. Blood. 2015;126:832.

    Article  Google Scholar 

  58. Zhu J, Li J, Zhou J, Song Y, Qi J, Xu W, et al. BGB-3111, a highly specific BTK inhibitor, is well tolerated and highly active in Chinese patients with relapsed/refractory B-cell malignancies: initial report of a phase 1 trial in China. Blood. 2017;130:5347.

    Article  CAS  Google Scholar 

  59. Trotman J, Tam C, Marlton P, Gottlieb D, Simpson D, Cull G, et al. Improved depth of response with increased follow-up for patients with Waldenstrom macroglobulinemia treated with Bruton’s tyrosine kinase inhibitor zanubrutinib. EHA Learn Cent. 2018:PS1186.

    Google Scholar 

  60. Paulus A, Akhtar S, Bashir Y, Paulus S, Yousaf H, Roy V, et al. Drug resistance alters CD38 expression and in vitro response to daratumumab in Waldenstrom macroglobulinemia cells. Blood. 2016;128:3018.

    Article  Google Scholar 

  61. Paulus A, Chitta KS, Wallace PK, Advani PP, Akhtar S, Kuranz-Blake M, et al. Immunophenotyping of Waldenströms macroglobulinemia cell lines reveals distinct patterns of surface antigen expression: potential biological and therapeutic implications. PLoS One. 2015;10(4):1–17.

    Article  CAS  Google Scholar 

  62. Barakat FH, Medeiros LJ, Wei EX, Konoplev S, Lin P, Jorgensen JL. Residual monotypic plasma cells in patients with waldenstrom macroglobulinemia after therapy. Am J Clin Pathol. 2011;135(3):365–73.

    Article  PubMed  Google Scholar 

  63. Davids MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS, Wierda WG, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma patient demographic and clinical characteristics. J Clin Oncol. 2017;35(8):826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Castillo J, Gustine J, Meid K, Dubeau T, Allan J, Furman R, et al. Prospective phase II study of venetoclax in patients with previously treated Waldenstrom macroglobulinemia. EHA Learn Cent. 2018:S85.

    Google Scholar 

  65. Castillo J, Gustine J, Meid K, Dubeau T, Yang G, Xu L, et al. Idelalisib in Waldenström macroglobulinemia: high incidence of hepatotoxicity. Leuk Lymphoma. 2017;58(4):1002–4.

    Article  CAS  PubMed  Google Scholar 

  66. Burris HA, Flinn IW, Patel MR, Fenske TS, Deng C, Brander DM, et al. Umbralisib, a novel PI3Kδ and casein kinase-1ε inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: an open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol. 2018;19(4):486–96.

    Article  CAS  PubMed  Google Scholar 

  67. Sacco A, Affo L, Ghedini G, Lanzi G, Giacomini A, Motta M, et al. Targeting lymphoplasmacytic lymphoma through a novel anti-FGF-based therapeutical strategy. Blood. 2017;130:2818.

    Google Scholar 

  68. Munshi M, Liu X, Chen J, Xu L, Tsakmaklis N, Demos M, et al. Mutated MYD88 activates the BCR component SYK and provides a rationale therapeutic target in Waldenstrom’s macroglobulinemia. Blood. 2017;130:2539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayna Sarosiek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarosiek, S., Castillo, J.J. (2020). Novel Therapeutics in the Management of Waldenström Macroglobulinemia. In: Dittus, C. (eds) Novel Therapeutics for Rare Lymphomas. Springer, Cham. https://doi.org/10.1007/978-3-030-25610-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25610-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25609-8

  • Online ISBN: 978-3-030-25610-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics