Skip to main content

Lessons from Hands-Free Data Entry in Flexible Cystoscopy with Glass for Future Smart Assistance

  • Chapter
  • First Online:
Smart Assisted Living

Abstract

We explore how Google Glass can be used to annotate cystoscopy findings in a hands-free and reproducible manner by surgeons during operations in the sterile environment inspired by the current practice of hand-drawn sketches. We present three data entry variants involving head movements and speech input. In an experiment with eight surgeons and foundation doctors having up to 30 years’ of cystoscopy experience at a UK hospital, we assessed the feasibility, benefits and drawbacks of the system. We report data entry speed and error rate of input modalities and contrast it with the participants’ feedback on their perception of usability, acceptance and suitability for deployment. These results offer an expanded analysis of the participants’ feedback compared to previous analysis. The results highlight the potential of new data entry technologies and point out directions for future improvement of eyewear computers. The findings can be generalised to other endoscopic procedures (e.g. OGD/laryngoscopy) and could be included within hospital IT in future. The source code of the Glass application is available at https://github.com/sussexwearlab/GlassMedicalDataEntry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer Research UK (n.d.) Bladder cancer statistics. Retrieved 03 Mar 2016 from http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer

  2. Lee CSD, Yoon CY, Witjes JA (2008) The past, present and future of cystoscopy: the fusion of cystoscopy and novel imaging technology. BJU Int 102(9b):1228–1233

    Article  Google Scholar 

  3. Ploeg M, Aben KKH, Kiemeney LA (2009) The present and future burden of urinary bladder cancer in the world. World J Urol 27(3):289–293

    Article  Google Scholar 

  4. Macmillan Cancer Support (2011) Symptoms of bladder cancer. Retrieved 03 Mar 2016 http://www.macmillan.org.uk/Cancerinformation/Cancertypes/Bladder/Symptomsdiagnosis/Symptoms.aspx

  5. Zheng C, Lv Y, Zhong Q, Wang R, Jiang Q (2012) Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU Int 110:E680–E687

    Article  Google Scholar 

  6. James AC, Gore JL (2013) The costs of non-muscle invasive bladder cancer. Urol Clin North Am 40(2):261–269

    Article  Google Scholar 

  7. Sievert KD, Amend B, Nagele U et al (2009) Economic aspects of bladder cancer: what are the benefits and costs? World J Urol 27(3):295–300

    Article  Google Scholar 

  8. Yeung C, Dinh T, Lee J (2014) The health economics of bladder cancer: an updated review of the published literature. PharmacoEconomics 32(11):1093–1104

    Article  Google Scholar 

  9. NICE Guidelines (2015) Bladder cancer: diagnosis and management [NG2]. Retrieved 03 Mar 2016 from https://www.nice.org.uk/guidance/ng2/chapter/1-Recommendations#diagnosing-and-staging-bladder-cancer-2

  10. RCS (2014) Good surgical practice. Retrieved 03 Mar 2016 from https://www.rcseng.ac.uk/surgeons/surgical-standards/professionalism-surgery/gsp/documents/good-surgical-practice-pdf

  11. Storz. Image 1: SPIESTM. 2013. 96011020 TP2 SPIES 1.2 10/2013/MFL.E

    Google Scholar 

  12. Lux M, Riegler M (2013) Annotation of endoscopic videos on mobile devices: a bottom-up approach. In: Proceedings of MMSys, pp 141–145

    Google Scholar 

  13. UNISOFT Medical Systems (2016) Retrieved 03 Mar 2016 from http://www.unisoftmedical.co.uk/urological_medicine.asp

  14. van Veelen MA, Snijders CJ, van Leeuwen E, Goossen RH, Kazemier G (2003) Improvement of foot pedals used during surgery based on new ergonomic guidelines. Surg Endosc 17(7):1086–1091

    Article  Google Scholar 

  15. Wille M, Wischniewski S, Scholl PM, Van Laerhoven K (2014) Comparing Google Glass with tablet-PC as guidance system for assembling tasks. In: Proceedings of BSN workshops, pp 38–41

    Google Scholar 

  16. Shadiev R, Hwang NSW-Y, Chen N-S, Huang Y-M (2014) Review of speech-to-text recognition technology for enhancing learning. J Educ Technol Soc 17(4):65–84

    Google Scholar 

  17. Singh G, Nelson A, Robucci R, Patel C, Banerjee N (2015) Inviz: low-power personalized gesture recognition using wearable textile capacitive sensor arrays. In: Proceedings of PerCom, pp 198–206

    Google Scholar 

  18. Silva ES, Rodrigues MAF (2014) A gesture control system for aiding surgical procedures. In: Proceedings of ISDEA’14, pp 287–296

    Google Scholar 

  19. Brown-Clerk B, Rousek JB, Lowndes BR, Eikhout SM, Balogh BJ, Hallbeck MS (2011) Assessment of electrosurgical hand controls integrated into a laparoscopic grasper. Minim Invasive Ther Allied Technol 20(6):321–328

    Article  Google Scholar 

  20. Rousek JB, Brown-Clerk B, Lowndes BR, Balogh BJ, Hallbeck MS (2012) Optimizing integration of electrosurgical hand controls within a laparoscopic surgical tool. Minim Invasive Ther Allied Technol 21(3):222–233

    Article  Google Scholar 

  21. Harvin G (2014) Review of musculoskeletal injuries and prevention in the endoscopy practitioner. J Clin Gastroenterol 48(7):590–594

    Article  Google Scholar 

  22. Kim J, Huo X, Ghovanloo M (2010) Wireless control of smartphones with tongue motion using tongue drive assistive technology. In: Proceedings of EMBC, pp 5250–5253

    Google Scholar 

  23. Jing L, Zhou Y, Cheng Z, Huang T (2012) Magic ring: a finger-worn device for multiple appliances control using static finger gestures. Sensors 12(5):5775–5790

    Article  Google Scholar 

  24. Ruppert GC, Reis L, Amorim P, de Moraes T et al (2012) Touchless gesture user interface for interactive image visualization in urological surgery. World J Urol 10(5):687–691

    Article  Google Scholar 

  25. Ward D, Blackwell A, MacKay D (2000) Dasher—a data entry interface using continuous gestures and language models. In: Proceedings of UIST’00, pp 129–137

    Google Scholar 

  26. Silfverberg M, MacKenzie I, Korhonen P (2000). Predicting text entry speed on mobile phones. In: Proceedings of CHI’00, pp 9–16

    Google Scholar 

  27. Muensterer OJ, Lacher M, Zoeller C, Bronstein M, Kubler J (2014) Google Glass in pediatric surgery: an exploratory study. Int J Surg 12(4):281–289

    Article  Google Scholar 

  28. Ponce B et al (2014) Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices. Orthopedics 37(11):751–757

    Article  Google Scholar 

  29. Russell P et al (2014) First “glass” education: telementored cardiac ultrasonography using Google Glass-a pilot study. Acad Emerg Med 21(11):1297–1299

    Article  Google Scholar 

  30. Knight HM, Gajendragadkar P, Bokhari A (2015) Wearable technology: using Google Glass as a teaching tool. BMJ Case Rep 2015:1757–1790

    Article  Google Scholar 

  31. Benninger B (2015) Google Glass, ultrasound and palpation: the anatomy teacher of the future? Clin Anat 28(2):152–155

    Article  Google Scholar 

  32. Davis CR, Rosenfield LK (2015) Looking at plastic surgery through Google Glass: part 1. Systematic review of Google Glass evidence and the first plastic surgical procedures. Plast Reconstr Surg 135(3):918–928

    Article  Google Scholar 

  33. Schijven MP, Graafland M, Bemelman WA (2015) Google glass in surgery sharpen your vision. Surg Endosc 29(S72):0930–2794

    Google Scholar 

  34. Chai PR, Babu KM, Boyer EW (2015) The feasibility and acceptability of Google Glass for teletoxicology consults. J Med Toxicol 11(3):283–287

    Article  Google Scholar 

  35. Vorraber W et al (2014) Medical applications of near-eye display devices: an exploratory study. Int J Surg 12(12):1266–1272

    Article  Google Scholar 

  36. Krishnamurthy G (2015) Google glass in intervention radiology-potential applications and limitations. J Vasc Interv Radiol 26(2):1051–0443

    Article  Google Scholar 

  37. Mentis HM, Rahim A, Theodore PR (2015) Referencing ct scans through a headmounted optical display during laparoscopic surgery. Surg Endosc 29(S411):0930–2794

    Google Scholar 

  38. Aldaz G et al (2015) Hands-free image capture, data tagging and transfer using Google Glass: a pilot study for improved wound care management. PloS One 10(4):e0121179, 1932–6203

    Article  Google Scholar 

  39. Albrecht U et al (2014) Google Glass for documentation of medical findings: evaluation in forensic medicine. J Med Internet Res 16(2):1438–8871

    Article  Google Scholar 

  40. Horak K, DeLand SM, Blair DS (2014) The feasibility of mobile computing for on-site inspection. SAND 2014:18291

    Google Scholar 

  41. Paterson M, Glass MR (2015) The world through Glass: developing novel methods with wearable computing for urban videographic research. J Geogr Higher Educ 39(2):275–287

    Article  Google Scholar 

  42. Mauerhoefer L, Kawelke P, Poliakov I et al (2014) An exploration of the feasibility of using Google Glass for dietary assessment. Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1419

    Google Scholar 

  43. Scholl PM, Wille M, Van Laerhoven K (2015) Wearables in the wet lab: a laboratory system for capturing and guiding experiments. In: Proceedings of UbiComp, pp 589–599

    Google Scholar 

  44. Scholl P, Schultes T, Van Laerhoven K (2015) RFID-based compound identification in wet laboratories with Google Glass. In: Proceedings of WOAR, Article 13, 5 p

    Google Scholar 

  45. Wu T, Dameff C, Tully J (2014) Integrating Google Glass into simulation-based training: experiences and future directions. J Biomed Graph Comput 4:2

    Google Scholar 

  46. Yang T, Choi YM (2015) Study on the design characteristics of head mounted displays (HMD) for use in guided repair and maintenance. In: Proceedings of VAMR, pp 535–543

    Google Scholar 

  47. Teixeira JM, Ferreira R, Santos M, Teichrieb V (2014) Teleoperation using Google Glass and AR, drone for structural inspection. In: Proceedings of SVR, pp 28–36

    Google Scholar 

  48. McNaney R et al (2014) Exploring the acceptability of Google Glass as an everyday assistive device for people with Parkinson’s. In: Proceedings of CHI, pp 2551–2554

    Google Scholar 

  49. Khan A et al (2015) Beyond activity recognition: skill assessment from accelerometer data. In: Proceedings of UbiComp, pp 1155–1166

    Google Scholar 

  50. McNaney R et al (2014) Exploring the acceptability of Google Glass as an everyday assistive device for people with Parkinson’s. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 2551–2554

    Google Scholar 

Download references

Acknowledgements

This work was partly funded by the Austrian FFG project #5766494 “MinIAttention: Attention Management in Minimal Invasive Surgery”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Roggen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Templeman, C., Ordoñez Morales, F.J., Ciliberto, M., Symes, A., Roggen, D. (2020). Lessons from Hands-Free Data Entry in Flexible Cystoscopy with Glass for Future Smart Assistance. In: Chen, F., García-Betances, R., Chen, L., Cabrera-Umpiérrez, M., Nugent, C. (eds) Smart Assisted Living. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-25590-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25590-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25589-3

  • Online ISBN: 978-3-030-25590-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics