Skip to main content

Using Semantic Markup to Boost Context Awareness for Assistive Systems

  • Chapter
  • First Online:
Smart Assisted Living

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

Considerable effort to manually configure the user’s context and too coarse-grained activity recognition results often make it difficult to set up and run an assistive system. This chapter is the result of our experience with the Human Behavior Monitoring and Support (HBMS) assistive system, which monitors user’s activities of daily life and supports the user in carrying out these activities based on his own behavior model. To achieve the required context awareness, we join assistive systems with the semantic web to (1) simplify the construction of a personalized context model and to (2) improve the system’s activity recognition capabilities. We show how to semantically describe devices and web applications including their functionalities and user instructions and how to represent these descriptions in the web. The advantages of this semantic markup approach for the application of HBMS-System and beyond are discussed. Moreover, we show how personalized and adaptive HBMS user clients and the power of the context model of HBMS-System can be used to bridge an existing activity recognition gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, e.g., http://sdo-schemaorgae.appspot.com/TechArticle.

References

  1. Al Machot F, Mayr HC, Michael J (2014) Behavior modeling and reasoning for ambient support: HCM-L modeler. In: Hutchison D et al (eds) Modern advances in applied intelligence. International conference on industrial engineering and other applications of applied intelligent systems, IEA/AIE 2014, Kaohsiung, Taiwan, proceedings, Part II. Springer International Publishing, Cham, pp 388–397

    Chapter  Google Scholar 

  2. Arning K, Ziefle M (2015) “Get that camera out of my house!” Conjoint measurement of preferences for video-based healthcare monitoring systems in private and public places. In: Geissbühler A et al (eds) Inclusive smart cities and e-health. 13th international conference on smart homes and health telematics, ICOST 2015, Geneva, Switzerland, LNCS 9102. Springer, Cham, pp 152–164

    Chapter  Google Scholar 

  3. Chan LM, Zeng ML (2006) Metadata interoperability and standardization-a study of methodology part I: achieving interoperability at the schema level. D-LIB Mag 12(6)

    Google Scholar 

  4. Chen L, Hoey J, Nugent CD, Cook DJ, Yu Z (2012) Sensor-based activity recognition. IEEE Trans Syst, Man, and Cybern-Part C 42(6):790–808

    Article  Google Scholar 

  5. Chen L, Nugent CD, Okeyo G (2014) An ontology-based hybrid approach to activity modeling for smart homes. IEEE Trans Hum-Mach Syst (THMS) 44(1):92–105

    Article  Google Scholar 

  6. Chen L, Nugent CD, Wang H (2012) A knowledge-driven approach to activity recognition in smart homes. IEEE Trans Knowl Data Eng 24(6):961–974

    Article  Google Scholar 

  7. Daniele L, Solanki M, den Hartog F, Roes J (2016) Interoperability for smart appliances in the IoT world. In: Groth P et al (eds) The semantic web—ISWC 2016, LNCS 9982, Springer, pp 21–29

    Google Scholar 

  8. Dublin Core Metadata Initiative (DCMI) (2019) URL: goo.gl/gy4P9Q. Last access: 11.3.2019

    Google Scholar 

  9. eClassOWL—The Web Ontology for Products and Services (2007) URL: goo.gl/OgEJFg. Last access: 11.3.2019

    Google Scholar 

  10. FaBiO (2016) The FRBR-aligned Bibliographic Ontology. URL: goo.gl/CW9QfL. Last access: 9.5.2017

    Google Scholar 

  11. Friend of a Friend (FOAF) (2015) URL: goo.gl/PH5YBR. Last access: 11.3.2019

    Google Scholar 

  12. Friesser J (2019) Semantische Aufbereitung von Benutzeroberflächen von Webapplikationen für die aktive Assistenz mit HBMS, diploma thesis

    Google Scholar 

  13. Geisberger E, Broy M (eds) (2012) agendaCPS: Integrierte Forschungsagenda Cyber-physical systems, vol 1. Springer

    Google Scholar 

  14. Guizzardi G, Falbo R, Guizzardi RS (2008) Grounding software domain ontologies in the unified foundational ontology (UFO): the case of the ODE software process ontology. In: M Lencastre et al (eds) 11th Ib. WS on RE and SW Environments, pp 127–140

    Google Scholar 

  15. Hepp M (2008) GoodRelations: an ontology for describing products and services offers on the web. In: Gangemi A, Euzenat J (eds) Knowledge engineering: practice and patterns, vol 5268. Springer, Berlin, Heidelberg, pp 329–346

    Chapter  Google Scholar 

  16. Hisham A (2015) Dublin core versus Schema.org: a head-to-head metadata comparison. URL: goo.gl/btkd91. Last access: 11.3.2019

    Google Scholar 

  17. IoT-O (2017) a core domain Internet of things ontology. URL: goo.gl/CH1cdX. Last access: 11.3.2019

    Google Scholar 

  18. Jovanovic J, Bagheri E (2016) Electronic commerce meets the semantic web. IT Prof 18(4):56–65

    Article  Google Scholar 

  19. Kharlamov E et al (2016) Capturing industrial information models with ontologies and constraints. In: Groth P et al (eds) The semantic web—ISWC 2016, LNCS 9982, Springer, pp 325–343

    Google Scholar 

  20. Kofod-Petersen A, Cassens J (2006) Using activity theory to model context awareness. In: Roth-Berghofer TR, Schulz S, Leake DB (eds) Modeling and retrieval of context. MRC Workshop 2005, Edinburgh, UK, revised selected papers, LNCS 3946. Springer, Berlin, pp. 1–17

    Google Scholar 

  21. Learning Resource Metadata Initiative (LRMI) (2018) URL: goo.gl/APM6lE. Last access: 8.3.2019

    Google Scholar 

  22. Linked Open Vocabularies (LOV) (2019) URL: goo.gl/JWhNDU. Last access: 11.3.2019

    Google Scholar 

  23. Mayr HC, Al Machot F, Michael J, Morak G, Ranasinghe S, Shekhovtsov V, Steinberger C (2016) HCM-L: domain-specific modeling for active and assisted living. In: Karagiannis D, Mayr HC, Mylopoulos JP (eds) Domain-specific conceptual modeling. Concepts, methods and tools, vol 5. Springer, Cham, pp 527–552

    Chapter  Google Scholar 

  24. Mayr HC, Michael J, Ranasinghe S, Shekhovtsov VA, Steinberger C (2017) Model centered architecture. In: Cabot J et al (eds) Conceptual modeling perspectives. Springer International Publishing, Cham, pp 85–104

    Chapter  Google Scholar 

  25. Michael J, Mayr HC (2013) Conceptual modeling for ambient assistance. In: Ng W, Storey VC, Trujillo J (eds) Conceptual modeling—ER 2013. 32th International conference on conceptual modeling. Hong-Kong, China, LNCS 8217. Springer, pp 403–413

    Chapter  Google Scholar 

  26. Michael J, Koschmider A, Mannhardt F, Baracaldo N, Rumpe B (2019) User-centered and privacy-driven process mining system design. To appear in CAiSE Forum

    Google Scholar 

  27. Michael J, Steinberger C (2017) Context modelling for active assistance. In: Proceedings of the ER Forum 2017 and the ER 2017 demo track co-located with ER 2017, CEUR workshop proceedings (CEUR-WS.org), pp 221–234

    Google Scholar 

  28. Michael J, Steinberger C, Shekhovtsov VA, Al Machot F, Ranasinghe S, Morak G (2018) The HBMS story. Enterprise modelling and information systems architectures. Int J Concept Model 13:345–370

    Google Scholar 

  29. Ni Q, García Hernando AB, Pau de la Cruz I (2015) The elderly’s independent living in smart homes: a characterization of activities and sensing infrastructure survey to facilitate services development, Sensors 15(5):11312–11362

    Article  Google Scholar 

  30. Object Management Group OMG (2016) Meta Object Facility (MOF) Core, URL: http://bit.ly/OMG-MOF, Version 2.5.1. Last accessed 11.3.2019

  31. Open Graph Protocol (OGP) (2014) URL: goo.gl/5lKfLM. Last access: 11.3.2019

    Google Scholar 

  32. OWL Representation of ISO 19115 (Geographic Information-Metadata) (2014) URL: goo.gl/ygbQZ7. Last access: 11.3.2019

    Google Scholar 

  33. Provoc—Product Vocabulary (2016) URL: goo.gl/HGm3u1. Last access: 11.3.2019

    Google Scholar 

  34. Rafferty J, Nugent CD, Liu J, Chen L (2017) From activity recognition to intention recognition for assisted living within smart homes. IEEE Tr. Hum-Mach Syst 47(3):368–379

    Article  Google Scholar 

  35. Seydoux N, Drira K, Hernandez N, Monteil T (2016) IoT-O, a core-domain IoT ontology to represent connected devices networks. In: Blomqvist E et al (eds) European knowledge acquisition workshop (EKAW 2016): knowledge engineering and knowledge management, Springer, pp 561–576

    Google Scholar 

  36. Shekhovtsov VA, Ranasinghe S, Mayr HC, Michael J (2018) Domain specific models as system links. In: Woo C, Lu J, Li Z, Ling TW, Li G, Lee ML (eds) Advances in conceptual modeling. ER 2018, Xian, China. Springer International Publishing, Cham, pp 330–340

    Google Scholar 

  37. Smart Appliances REFerences (SAREF) Ontology (2013) URL: goo.gl/Y93h64. Last access: 11.3.2019

    Google Scholar 

  38. Stavrakantonakis I, Fensel A, Fensel D (2014) Matching web entities with potential actions. In: SEMANTiCS 2014—posters & demos track. CEUR

    Google Scholar 

  39. Steinberger C, Michael J (2017) Semantic mark-up of operating instructions. Tech. Report. URL: http://bit.ly/semanticMarkup. Last access: 11.3.2019

  40. Steinberger C, Michael J (2018) Towards cognitive assisted living 3.0. In: IEEE international conference on pervasive computing and communications workshops (PerCom workshops), Athens. IEEE, Piscataway, NJ, pp. 687–692

    Google Scholar 

  41. Strube G (ed) (1996) Wörterbuch der Kognitionswissenschaft. Klett-Cotta, Stuttgart

    Google Scholar 

  42. Svátek V, Růžička M (2003) Step-by-step mark-up of medical guideline documents. Int J Med Inf 702(3):329–335

    Article  Google Scholar 

  43. Vitvar T, Kopecký J, Viskova J, Fensel D (2008) WSMO-lite annotations for web services. In: Bechhofer S (ed) The semantic web: research and applications. 5th European semantic web conference, ESWC 2008, Tenerife, Spain. Springer, Berlin, pp 674–689

    Google Scholar 

  44. WSMO-Lite Ontology (2013) URL: goo.gl/5y5uxo. Last access: 11.3.2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Steinberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinberger, C., Michael, J. (2020). Using Semantic Markup to Boost Context Awareness for Assistive Systems. In: Chen, F., García-Betances, R., Chen, L., Cabrera-Umpiérrez, M., Nugent, C. (eds) Smart Assisted Living. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-25590-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25590-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25589-3

  • Online ISBN: 978-3-030-25590-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics