Skip to main content

Part of the book series: Geobotany Studies ((GEOBOT))

  • 243 Accesses

Abstract

The relationship between climate and plants was noted as long ago as the third century BC by Theophrastus (Hort 1916), who highlighted the importance of climate in plant distribution through direct and experimental observation. The ideas of this thinker were developed no further until the late eighteenth and early nineteenth century—aided by the invention of the thermometer and the barometer in the seventeenth century—in the works of de Willdenow (1792), von Humboldt (1807), Wahlenberg (1811) and Grisebach (1838), when it became evident that climate was the main factor driving the distribution of plants and the communities they form, giving rise to a new science called Bioclimatology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angot A (1906) Étude sur le régime pluviométrique de la méditerranée. Compt Rend Soc Sav 1906:120–134

    Google Scholar 

  • Angot A (1918) Études sur le climat de la France. Régime des pluies: II. Régions du Sud-Ouest et du Sud. Ann. Bureau Centr. Mét. France. I Mémoires, Paris

    Google Scholar 

  • Bagnouls F, Gaussen H (1954) Saison seche et indice xérothermique. Bull Soc Hist Nat Toulouse 88:193–239

    Google Scholar 

  • Bagnouls F, Gaussen H (1957) Les climats biologiques et leur classification. Ann Géogr 355:193–220

    Article  Google Scholar 

  • Blundo C, Malizia LR, Blake JG, Brown AD (2012) Tree species distribution in Andean forests: influence of regional and local factors. J Trop Ecol 28:83–95

    Article  Google Scholar 

  • Boonpragob K, Santisirisomboon J (1996) Modeling potential changes of forest area in Thailand under climatic change. Water Air Soil Pollut 92:107–117

    CAS  Google Scholar 

  • Box EO (1981a) Macroclimate and plant forms: an introduction to predictive modelling in phytogeography. Tasks for vegetation science, vol 1. Dr. W. Junk, The Hague

    Book  Google Scholar 

  • Box EO (1981b) Predicting physiognomic vegetation types with climate variables. Vegetatio 45:127–139

    Article  Google Scholar 

  • Box EO (1982) Life forms composition of mediterranean terrestrial vegetation in relation to climatic factors. Ecol Medit Marseille 8:173–181

    Google Scholar 

  • Box EO (1987) Plant life forms and Mediterranean environments. Ann Bot Roma 45(2):8–42

    Google Scholar 

  • Buitrago LG (2000) El clima de la Provincia de Jujuy, 2da edn. EDIUNJU, Jujuy

    Google Scholar 

  • Daget P (1977a) Le bioclimat méditerraneen: caractéres généraux et modes de caractérization. Vegetatio 34(1):1–20

    Article  Google Scholar 

  • Daget P (1977b) Le bioclimat mediterranéen: analyse des formes climatiques par le systeme d’Emberger. Vegetatio 34(2):87–103

    Article  Google Scholar 

  • Daget P, David P (1982) Essai de comparaison de diverses approches climatiques de la mediterranéite. Ecol Mediterr 8:33–48

    Google Scholar 

  • de Martonne E (1926) L’indice d’aridité. Bull Ass Geogr Fr 9:3–5

    Article  Google Scholar 

  • de Martonne E (1942) Nouvelle carte mondiale de l’indice d’aridité (avec una carte hors texte et une figure dans le texte). An Géogr 288:241–250

    Article  Google Scholar 

  • Defaut B (1989) Un climmagrame simple et un systéme d’etages phytoclimatiques au service des naturalistes et des aménageurs en region paléartique occidentale. Bull Soc Hist Nat Toulouse 125:61–68

    Google Scholar 

  • Elías Castillo F, Ruiz Beltran L (1978) Agroclimatología de España. Cuadernos de INIA 7:1–29

    Google Scholar 

  • Emberger L (1930) Sur une formule applicable en géographie botanique. Compt Rend Hebd Seanc Acad Paris 191:389–391

    Google Scholar 

  • Emberger L (1932) Sur une formule climatique et ses applications en botanique. La Métereologie 92–93:1–10

    Google Scholar 

  • Emberger L (1938) La definition phytogeographique ddu climat désertique. Mem Soc Biogeogr 6:9–14

    Google Scholar 

  • Emberger L (1942) Un projet d’une classification des climats, du point de vue phytogeographique. Bull Soc Hist Nat Toulouse 77:97–124

    Google Scholar 

  • Emberger L (1943) Les limites de l’aire de la végétation méditerranéenne en France. Bull Soc Hist Nat Toulouse 78:159–180

    Google Scholar 

  • Emberger L (1954) Project d’une classification biogéographique des climats. An Biol 31(5–6):249–255

    Google Scholar 

  • Emberger L (1959) Sur la notion de transition en particulier dans le damaine du climat mediterranéen. Bull Serv Carte Phytogeogr 4:95–117

    Google Scholar 

  • Emberger L (1971) Considérations complémentaires au sujet des recherches bioclimatologiques et phytogeografiques-ecologiques. In: Travaux de botanique et d’ecologie. Masson, Paris, pp 291–301

    Google Scholar 

  • Entrocassi GS (2016) Estudio de los bosques subtropicales de montaña de la reserva ecológica de uso múltiple serranías de Zapla (Jujuy, Argentina): composición florística, distribución de la vegetación y caracterización bioclimática. Mem. Doc. (ined) Univ Complutense, Madrid

    Google Scholar 

  • Entrocassi GS, Hormigo DF, Gavilán RG, Sánchez-Mata D (2014) Bioclimatic typology of Jujuy province (Argentina). Lazaroa 35:7–18

    Article  Google Scholar 

  • Fernández-González F (1997) Bioclimatología. In: Izco J (ed) Bótanica. McGraw Hill Interamericana, Madrid, pp 607–652

    Google Scholar 

  • Gaussen H (1921) Pluviosité estivale et pénétration de la végétation méditerranéene dans les Pyrénées françaises. Ann Géogr 30:249–256

    Article  Google Scholar 

  • Gaussen H (1935) Les précipitations annuelles en France. Ann Géogr 251:449–473

    Article  Google Scholar 

  • Gaussen H (1941) Le climat et le sol du Pays Basque. Bull Soc Bot Fr 88(1):5–16

    Article  Google Scholar 

  • Gaussen H (1949) Flore mesogéenne, vegetation et climat méditerranéens. Compt Rend Somm Séanc Soc Biogéogr 228:80–83

    Google Scholar 

  • Gaussen H, Bagnouls F (1952) L’indice xerothermique. Bull Ass Geogr Fr 222–223:10–16

    Article  Google Scholar 

  • Gavilán R (2005) The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int J Biometeorol 50:111–120

    Article  PubMed  Google Scholar 

  • Gavilán R, Fernández-González F (1997) Climatic discrimination of Mediterranean broad-leaved sclerophyllous and deciduous forests in central Spain. J Veg Sci 8(3):377–386

    Article  Google Scholar 

  • Gavilán R, Fernández-González F, Blasi C (1998) Climatic classification and ordination of the Spanish Sistema Central: relationships with potential vegetation. Plant Ecol 139:1–11

    Article  Google Scholar 

  • Gentilli J (1953) Une critique de la méthode de Thornthwaite pour la classification des climats. Ann Géogr 62:180–185

    Article  Google Scholar 

  • Giacobbe A (1938) Schema di una teoría ecológica per la classificazione della vegetatione italian. Nuovo G Bot Ital 45:37–121

    Article  Google Scholar 

  • Giacobbe A (1958) Ricerche ecologiche sull’ aridita nei paesi del Mediterraneo occidentale. Ist Bot Univ Firenze, Florence

    Google Scholar 

  • Giacobbe A (1959) Nouvelles recherches écologiques sur l’aridité sans les pays de la Méditerranáe occidentale. Naturalia Monspel 11:7–27

    Google Scholar 

  • Giacobbe A (1967) La mesure du bioclimat mediterraneen. Nat Monspe Ser Bot 16:45–60

    Google Scholar 

  • Grisebach A (1838) Ueber den Einfluss des Climats auf die Begranzung der naturlichen floren. Linnaea 12:159–200

    Google Scholar 

  • Guara M, Laguna E, Sanchis E (1986) Aproximación cartográfica a la distribución del índice de Emberger en la Comunidad Valenciana. Collect Bot 16(2):355–363

    Google Scholar 

  • Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105:367–368

    Article  CAS  PubMed  Google Scholar 

  • Holdridge LR (1959) Simple method for determining potential evapotranspiration from temperature data. Science 130:572

    Article  Google Scholar 

  • Holdridge LR (1966) The life zone system. Adansonia 6:199–203

    Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San José, 206 p

    Google Scholar 

  • Holdridge LR, Grenke WC, Hatheway WC, Liang WH, Tosi JA (1971) Forest environment in tropical life zones. Apilot sutdy. Oxford, New York, 747 p

    Google Scholar 

  • Hort A (1916) Enquity unto plants and minor works on odours and weather signs. By Theophrastus. W. Heinemann, Londres

    Google Scholar 

  • Köppen W (1936) Das Geographische System der Klimate. Geogr Z 6:593–611

    Google Scholar 

  • Livinstong BE, Livinstong GJ (1913) Temperature coefficients in plant geography and climatology. Bot Gaz 61:349–375

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species‐density: historical and prospective views. Glob Ecol Biogeogr 10(1):3–13

    Article  Google Scholar 

  • Nahal L (1981) The mediterranean climate from a biological viewpoint. In: Goodall O (ed) Mediterranean-type shrubland ecosystems of the world. Elsevier, Amsterdam

    Google Scholar 

  • Navarro G, Maldonado M (2002) Geografía Ecológica de Bolivia. Vegetación y ambientes acuáticos. Centro de Ecología. Difusión Simón I Patiño, Santa Cruz, CA

    Google Scholar 

  • Ozenda P (1954) La temperature, facteur de repartition de la vegetation en montagne. An Biol 31(5–6):295–312

    Google Scholar 

  • Ozenda P (1975) Sure les etages de vegetation dans les montagnes du bassin mediterraneen. Doc Cartogr Ecol 16:1–32

    Google Scholar 

  • Pan Y, Li X, Gong P, He C, Shi P, Pu R (2003) An integrative classification of vegetation in China based on NOAA/AVHRR and vegetation-climate indices of the Holdridge life zone. Int J Remote Sensing 24(5):1009–1027

    Article  Google Scholar 

  • Pelton WL, King KH, Tanner CB (1959) An evaluation on the Thornthwhite and mean temperature methods for determining potential evapotranspiration. Agron J 52:387–395

    Article  Google Scholar 

  • Philippis A (1937) Classificazioni ed indice del clima in rapporto alla vegetacione forestale italiana. Nuovo Giorn Bot Ital 44:1–142

    Article  Google Scholar 

  • Quézel P (1979) Les forets du pourtour mediterraneen: ecologie, conservation et amenagement. UNESCO Not Tech MAB 2:9–33

    Google Scholar 

  • Rivas-Martínez S (1981a) Les etages bioclimatiques de la vegetation de la Peninsule Iberique. An Jard Bot Madrid 37:251–268

    Google Scholar 

  • Rivas-Martínez S (1981b) Sobre la vegetación da Serra da Estrela. An R Acad Farm 47:435–480

    Google Scholar 

  • Rivas-Martínez S (1983) Nuevo índice de termicidad para la región mediterránea. In: Avances sobre la investigación en Bioclimatología. VII Re. Bioclim, Zaragoza, pp 377–380

    Google Scholar 

  • Rivas-Martínez S (1984) Pisos bioclimáticos de España. Lazaroa 5:33–43

    Google Scholar 

  • Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. ICONA, ser Téc., M. Agric, Pesc, Alim, Madrid, 268 p

    Google Scholar 

  • Rivas-Martínez S (1990) Bioclimatic belts of West Europe. In: Duplessy JC, Pons A, Fantech R (eds) Enviroment and quality of life. Proc Euro School Clim Nat Haz C. Comm. Eur. Comm., pp 225–246

    Google Scholar 

  • Rivas-Martínez S (1993) Clasificación bioclimática de la Tierra. F Bot Matr 10:1–23

    Google Scholar 

  • Rivas-Martínez S (1997) Syntaxonomical synopsis of the potential natural plant communities of North America. I Itinera Geobot 10:5–148

    Google Scholar 

  • Rivas-Martínez S (2001) Global Bioclimatics (Clasificación Bioclimática de la Tierra). Phytosociological Research Center, Madrid

    Google Scholar 

  • Rivas-Martínez S (2008) Global Bioclimatics (Clasificación Bioclimática de la Tierra). http://www.globalbioclimatics.org

  • Rivas-Martínez S (2010) Sinopsis bioclimática de la Tierra y mapas bioclimáticos de Suramérica. Lecturas Singulares 10. Instituto de España. Real Academia Nacional de Farmacia, Madrid

    Google Scholar 

  • Rivas-Martínez S, Bascones JC, Díaz TE, Fernández-González F, Loidi J (1991) Vegetación del Pirineo occidental y Navarra. Itinera Geobot 5:5–456

    Google Scholar 

  • Rivas-Martínez S, Sánchez-Mata D, Costa M (1999) North American boreal and western temperate forest vegetation. Itinera Geobot 12:3–311

    Google Scholar 

  • Rivas-Martínez S, Navarro G, Penas A, Costa M (2011) Biogeographic map of South America. A preliminary survey. Int J Geobot Res 1:21–40 + Map

    Google Scholar 

  • Russel RJ (1926) Climates of California. Publ Geogr Univ California 2:73–84

    Google Scholar 

  • Sánchez-Mata D, Gavilán RG, de la Fuente V (2017) The Sistema Central (Central Range). In: Loidi J (ed) The Vegetation of the Iberian Peninsula, vol 1. Springer, Cham, pp 549–588

    Chapter  Google Scholar 

  • Sanderson M (1948) The climate of Canada according to the new Thornthwaite classification. Sci Agric 28:501–517

    Google Scholar 

  • Thornthwaite CW (1931) The climates of North America according to a new classification. Geogr Rev 21:633–655

    Article  Google Scholar 

  • Thornthwaite CW (1943) Problems in the classification of climates. Geogr Rev 33:233–255

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rey 38:55–94

    Article  Google Scholar 

  • Thornthwaite CW (1954) A re-examination of the concept and measurement of potential evapotranspiration. In: Mather J (ed) The measurement of potential evapotranspiration, vol 7. Publications in Climatology, Seabrook, NJ, pp 200–209

    Google Scholar 

  • Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suec 67:3–110

    Google Scholar 

  • Tuhkanen S (1984) A circumboreal system ofclimatic phytogeographical regions. Acta Bot Fenici 127:3–50

    Google Scholar 

  • Vernet JL, Ph V (1966) Sur un indice bioclimatique applicable aux climats de la France. Naturalia Monspel sér bot 17:253–262

    Google Scholar 

  • von Humboldt A (1807) Ideen zu einem Geographie der Pflazen nebst einem naturgemälde dei Tropenländer. Tübingen, 182 p

    Google Scholar 

  • Wahlenberg G (1811) Kamtschalische Laub und Lebermoose, gesammelt auf der russischen Entdeckungsreise von dem Herrn Hofrath Tilesius und untersucht. Mag Ges Natur Fr 5:289–297

    Google Scholar 

  • Walter H (1973) Vegetation of the earth. Springer, London, 237 p

    Google Scholar 

  • Walter H, Box E (1976) Global classification of natural terrestrial ecosystems. Vegetatio 32(2):75–81

    Article  Google Scholar 

  • Walter H, Lieth H (1964) Klimadiagram-Weltatlas, Part 2. Gustav Fischer, Jena

    Google Scholar 

  • Walter H, Harnickell E, Müeller-Dombois D (1975) Climatediagram maps of the individual continents and the ecological climatic regions of the earth. In: Supplement to the vegetation monographs. Geografisk Tidsskrift, vol 74. Springer/Verlag, Berlin/Heidelberg

    Google Scholar 

  • Wilcock AA (1950) Potential evapotranspiration: a simplification of Thornthwaite’s method. Proc R Soc Victoria 63:25–30

    Google Scholar 

  • Willdenow (1792) Grundiss der Kräuterkunde zu Vorlesungen. Bei Haude und Spener, Berlin

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Woodward FI, Williams BG (1987) Climate and plant distribution at global and local scales. Vegetatio 69:189–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Entrocassi, G.S., Gavilán, R.G., Sánchez-Mata, D. (2020). Bioclimatology. In: Subtropical Mountain Forests of Las Yungas: Vegetation and Bioclimate. Geobotany Studies. Springer, Cham. https://doi.org/10.1007/978-3-030-25521-3_3

Download citation

Publish with us

Policies and ethics