Skip to main content

Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs) Contaminated Soil Through Fungal Communities

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds resulting from both natural and anthropogenic processes, distributed in all environments worldwide. In soils, PAHs can remain for decades, absorbed into the soil particles and organic matter and, thus, inaccessible to microbial degradation. Microbial fungi are well suited for terrestrial habitats and can reach xenobiotic compounds in soil due to their multicellular mycelium. In general, fungi contribute to the overall microbial population in soils, allowing the transport and interaction with other communities. However, these communities have proven difficult to observe in conventional biotic studies. As such, the behavior of fungal communities in PAH-polluted soils remains poorly studied. Deeper knowledge could help to identify key drivers of bioremediation under different conditions for further application in real-world scenarios, including conditions obtained using cell culture techniques. This review serves to present an overview of the role of fungi in aromatic hydrocarbon degradation and the importance of the study of fungal functional diversity to understand the process of xenobiotic removal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achten C, Andersson JT (2015) Overview of Polycyclic Aromatic Compounds (PAC). Polycycl Aromat Compd 35(2-4):177–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alrumman SA, Standing DB, Paton GI (2015) Effects of hydrocarbon contamination on soil microbial community and enzyme activity. J King Saud Univ Sci 27:31–41

    Article  Google Scholar 

  • Anastasi A, Coppola T, Prigione V, Varese GC (2009) Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J Hazard Mater 165:1229–1233

    Article  CAS  PubMed  Google Scholar 

  • Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators. Springer, Berlin/Heidelberg, pp 29–49

    Chapter  Google Scholar 

  • Andreolli M, Lampis S, Brignoli P, Vallini G (2015) Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study. J Environ Manag 153:121–131

    Article  CAS  Google Scholar 

  • Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8

    Article  CAS  PubMed  Google Scholar 

  • Aranda E, Scervino JM, Godoy P, Reina R, Ocampo JA, Wittich RM, Garcia-Romera I (2013) Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environ Pollut 181:182–189

    Article  CAS  PubMed  Google Scholar 

  • Aranda E, Godoy P, Reina R, Badia-Fabregat M, Rosell M, Marco-Urrea E, García-Romera I (2017) Isolation of Ascomycota fungi with capability to transform PAHs: insights into the biodegradation mechanisms of Penicillium oxalicum. Int Biodeterior Biodegradation 122:141–150

    Article  CAS  Google Scholar 

  • Balaji V, Arulazhagan P, Ebenezer P (2014) Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol 35:521–529

    CAS  PubMed  Google Scholar 

  • Banitz T, Wick LY, Fetzer I, Frank K, Harms H, Johst K (2011) Dispersal networks for enhancing bacterial degradation in heterogeneous environments. Environ Pollut 159:2781–2788

    Article  CAS  PubMed  Google Scholar 

  • Banitz T, Johst K, Wick LY, Schamfuss S, Harms H, Frank K (2013) Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation. Environ Microbiol Rep 5:211–218

    Article  CAS  PubMed  Google Scholar 

  • Bastida F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernández T, von Bergen M, García C (2016) The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteome 135:162–169

    Article  CAS  Google Scholar 

  • Bautista LF, Morales G, Sanz R (2015) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15. Chemosphere 136:273–280

    Article  CAS  PubMed  Google Scholar 

  • Becker S, Halsall CJ, Tych W, Hung H, Attewell S, Blanchard P, Li H, Fellin P, Stern G, Billeck B, Friesen S (2006) Resolving the long-term trends of polycyclic aromatic hydrocarbons in the Canadian Arctic atmosphere. Environ Sci Technol 40:3217–3322

    Article  CAS  PubMed  Google Scholar 

  • Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharya S, Das A, Prashanthi K, Palaniswamy M, Angayarkanni J (2014) Mycoremediation of Benzo[a]pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators. 3 Biotech 4(2):205–211

    Article  PubMed  Google Scholar 

  • Biache C, Ouali S, Cebron A, Lorgeoux C, Colombano S, Faure P (2017) Bioremediation of PAH-contamined soils: consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance. J Hazard Mater 329:1–10

    Article  CAS  PubMed  Google Scholar 

  • Björklöf K, Karlsson S, Frostegård Å, Jørgensen KS (2009) Presence of actinobacterial and fungal communities in clean and petroleum hydrocarbon contaminated subsurface soil. Open Microbiol J 3:75–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour 13:218–224

    Article  CAS  PubMed  Google Scholar 

  • Borowik A, Wyszkowska J, Oszust K (2017) Functional diversity of fungal communities in soil contaminated with diesel oil. Front Microbiol 8:1862

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourceret A, Cebron A, Tisserant E, Poupin P, Bauda P, Beguiristain T, Leyval C (2016) The bacterial and fungal diversity of an aged PAH- and heavy metal-contaminated soil is affected by plant cover and edaphic parameters. Microb Ecol 71:711–724

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Morales RL, García-Fontana C, Fernández-Irigoyen J, Santamaría E, González-López J, Manzanera M, Aranda E (2018) Anthracene drives sub-cellular proteome-wide alterations in the degradative system of Penicillium oxalicum. Ecotoxicol Environ Saf 159:127–135

    Article  CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2079–2110

    Chapter  Google Scholar 

  • Clements FE (1916) Plant succession; an analysis of the development of vegetation. Carnegie Institution of Washington, Cornell University Library, Washington

    Book  Google Scholar 

  • Cuadros-Orellana S, Leite LR, Smith A, Medeiros JD, Badotti F, Fonseca PL, Vaz AB, Oliveira G, Góes-Neto A (2013) Assessment of fungal diversity in the environment using metagenomics:a decade in review. Fungal Genom Biol 3:1–14

    Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72(1):28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dentinger Bryn TM, Didukh MY, Moncalvo JM (2011) Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina). PLoS One 6(9):e25081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Chen B, Zhu L (2013) Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution. Chin Sci Bull 58(6):613–621

    Article  CAS  Google Scholar 

  • Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71:1593–1598

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Xu M, Sun K, Hu L, Cao W, Dai C, Jia Y (2018) Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo. Chemosphere 203:160–169

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199

    Article  CAS  PubMed  Google Scholar 

  • Furuno S, Foss S, Wild E, Jones KC, Semple KT, Harms H, Wick LY (2012) Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons. Environ Sci Technol 46:5463–5470

    Article  CAS  PubMed  Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300

    Article  CAS  Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Soc. 53(1):7–26. Torrey Botanical Society Stable. http://www.jstor.org/stable/2479933

  • Godoy P, Reina R, Calderón A, Wittich R-M, García-Romera I, Aranda E (2016) Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi. Environ Sci Pollut R 23(20):20985–20996

    Article  CAS  Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F et al (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Lou J, Wang H, Yang Y, Wu L, Wu J, Xu J (2016) Biodegradation, biosorption of phenanthrene and its trans-membrane transport by Massilia sp. WF1 and Phanerochaete chrysosporium. Front Microbiol 7:38

    PubMed  PubMed Central  Google Scholar 

  • Hadibarata T, Zubir MMFA, Rubiyatno CTZ, Yusoff ARM, Salim MR, Fulazzaky MA, Seng B, Nugroho AE (2013) Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia Microbiol 58(5):385–391

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  • Huarte-Bonnet C, Kumar S, Saparrat MCN, Girotti JR, Santana M, Hallsworth JE, Pedrini N (2018) Insights into hydrocarbon assimilation by Eurotialean and Hypocrealean Fungi: roles for CYP52 and CYP53 clans of cytochrome p450 genes. Appl Biochem Biotechnol 184(3):1047–1060

    Article  CAS  PubMed  Google Scholar 

  • Huzefa AR, Andrew NM, Cedric JP, Nicholas HO (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80(3):756–770

    Article  CAS  Google Scholar 

  • Ihrmark K, Boedeker Inga TM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandstroem-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Lett 82(3):666–677

    Article  CAS  Google Scholar 

  • Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    Article  CAS  PubMed  Google Scholar 

  • Kachienga L, Jitendra K, Momba M (2018) Metagenomic profiling for assessing microbial diversity and microbial adaptation to degradation of hydrocarbons in two South African petroleum-contaminated water aquifers. Sci Rep 8:7564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelly LJ, Hollingsworth PM, Coppins BJ, Ellis CJ, Harrold P, Tosh J, Yahr R (2011) DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytol 191(1):288–300

    Article  PubMed  Google Scholar 

  • Kohlmeier S, Smits TH, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646

    Article  CAS  PubMed  Google Scholar 

  • Konopka A (2009) What is microbial community ecology? ISME J 3:1223–1230

    Article  PubMed  Google Scholar 

  • Konopka A, Lindemann S, Fredrickson J (2015) Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J 9:1488–1495

    Article  PubMed  Google Scholar 

  • Kotoky R, Rajkumari J, Pandey P (2018) The rhizosphere microbiome: significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. J Environ Manag 217:858–870

    Article  CAS  Google Scholar 

  • Kubicek CP, Druzhinina IS (2007) Nutrient cycling by saprotrophic fungi in terrestrial habitats. In: Environmental and microbial relationships, vol 4. The Mycota, Springer, Berlin/Heidelberg, pp 271–279

    Chapter  Google Scholar 

  • Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Jang Y, Choi Y-S, Kim M-J, Lee J, Lee H, Hong J-H, Lee YM, Kim G-H, Kim J-J (2014) Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods 97:56–62

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li P, Lin X, Zhang C, Li Q, Gong Z (2008) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150:21–26

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wu Y, Lin X, Zhang J, Zeng J (2012) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in soil microcosms amended with mushroom cultivation substrate. Soil Biol Biochem 47:191–197

    Article  CAS  Google Scholar 

  • Lladó S, Covino S, Solanas AM, Viñas M, Petruccioli M, D’annibale A (2013a) Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. J Hazard Mater 248-249:407–414

    Article  PubMed  CAS  Google Scholar 

  • Lladó S, Gràcia E, Solanas AM, Viñas M (2013b) Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil. Soil Biol Biochem 67:114–123

    Article  CAS  Google Scholar 

  • Loehr RC, Webster MT (1996) Behavior of fresh vs. aged chemicals in soil. Soil Sediment Contam 5(4):361–383

    Article  CAS  Google Scholar 

  • Luch A (2009) On the impact of the molecular structure in chemical carcinogenesis. In: Molecular, clinical and environmental toxicology. Birkhäuser, Basel, pp 151–179

    Chapter  Google Scholar 

  • Maddela NR, Masabanda M, Leiva-Mora M (2015) Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest. Water Sci Technol 71:1554–1561

    Article  CAS  PubMed  Google Scholar 

  • Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M (2017) Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeterior Biodegradation 116:48–57

    Article  CAS  Google Scholar 

  • Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32(6):620–628

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Mineki S, Suzuki K, Iwata K, Nakajima D, Goto S (2015) Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycycl Aromat Compd 35:120–128

    Article  CAS  Google Scholar 

  • Morelli IS, Saparrat MCN, Panno MTD, Coppotelli BM, Arrambari A (2013) Bioremediation of PAH-contaminated soil by fungi. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators. Springer, Berlin/Heidelberg, pp 159–179

    Chapter  Google Scholar 

  • Mougin C, Cheviron N, Pinheiro M, Lebrun JD, Boukcim H (2013) New insights into the use of filamentous fungi and their degradative enzymes as tools for assessing the ecotoxicity of contaminated soils during bioremediation processes. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators. Springer, Berlin/Heidelberg, pp 419–432

    Chapter  Google Scholar 

  • Nazir R, Warmink JA, Boersma H, van Elsas JD (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71:169–185

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova SV, Pozdnyakova NN, Turkovskaya OV (2009) Emulsifying agent production during PAHs degradation by the white rot fungus Pleurotus ostreatus D1. Curr Microbiol 58(6):554–558

    Article  CAS  PubMed  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745

    Article  PubMed  CAS  Google Scholar 

  • Olicón-Hernández DR, González-López J, Aranda E (2017) Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol 8:1792

    Article  PubMed  PubMed Central  Google Scholar 

  • Parlanti E (1990) Utilisation des hydrocarbures comme traceurs d’origine de la matière organique sédimentaire en mileu marin. Etude du Golfe du Lyon et du Golfe de Gascogne (Programme Ecomarge) PhD thesis Nr 495, University Bordeaux I, Bordeaux, France; pp 289

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Reyes-César A, Absalón ÁE, Fernández FJ, González JM, Cortés-Espinosa DV (2014) Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J Microbiol Biotechnol 30:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA, Lindahl BD, Menkis A, James TY (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333(6044):876–879

    Article  CAS  PubMed  Google Scholar 

  • Sawulski P, Boots B, Clipson N, Doyle E (2015) Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil. Lett Appl Microbiol 61:199–207

    Article  CAS  PubMed  Google Scholar 

  • Schamfuß S, Neu TR, van der Meer JR, Tecon R, Harms H, Wick LY (2013) Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol 47:6908–6915

    Article  PubMed  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Consortium FB (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese GC (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. In: Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology147 (1):237–246

    Google Scholar 

  • Sharma A, Singh SB, Sharma R, Chaudhary P, Pandey AK, Ansari R, Vasudevan V, Arora A, Singh S, Saha S, Nain L (2016) Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. J Environ Manag 181:728–736

    Article  CAS  Google Scholar 

  • Sharma S, Shanmugam V, Brar GS, Thakur N, Thakur S, Thakur P, Phurailatpam S, Yadav AN (2019) Genetic diversity and phylogenetic profiling of Fusarium sp., the causing storage rot of ginger (Zingiber officinale) in Himachal Pradesh and their potential environmental eco-friendly management strategies. Res J Biotechnol 14:44–54

    Google Scholar 

  • Siles JA, Margesin R (2018) Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Appl Microbiol Biotechnol 102:4409–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simarro R, González N, Bautista LF, Molina MC (2013) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. FEMS Microbiol Ecol 83(2):438–449

    Article  CAS  PubMed  Google Scholar 

  • Storey S, Ashaari MM, McCabe G, Harty M, Dempsey R, Doyle O, Clipson N, Doyle EM (2014) Microbial community structure during fluoranthene degradation in the presence of plants. J Appl Microbiol 117:74–84

    Article  CAS  PubMed  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, India, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Tejeda-Agredano MC, Gallego S, Vila J, Grifoll M, Ortega-Calvo JJ, Cantos M (2012) Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biol Biochem 57:830–840

    Article  CAS  Google Scholar 

  • Thomas F (2013) Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation. Microb Biotechnol 6(1):80–84

    Article  CAS  Google Scholar 

  • Tony H, Ayu KR, Myzairah H (2014) Biosorption and biotransformation of fluoranthene by the white-rot fungus Pleurotus eryngii F032. Biotechnol Appl Biochem 61(2):126–133

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan V, Gayathri KV, Krishnan MEG (2018) Bioremediation of a pentacyclic PAH, dibenz(a,h)Anthracene- A long road to trip with bacteria, fungi, autotrophic eukaryotes and surprises. Chemosphere 202:387–399

    Article  CAS  PubMed  Google Scholar 

  • Verdin A, Lounès-Hadj Sahraoui A, Newsam R, Robinson G, Durand R (2005) Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environ Pollut 133(2):283–291

    Article  CAS  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Wang Z, Nilsson R, Lopez-Giraldez F, Zhuang W, Dai YC, Johnston PR, Townsend JP (2011) Tasting soil fungal diversity with earth tongues: phylogenetic test of SATe alignments for environmental ITS data. PLoS One 6(4):e19039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcke W (2000) Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review. J Plant Nutr Soil Sci 163(3):229–248

    Article  CAS  Google Scholar 

  • Winquist E, Björklöf K, Schultz E, Räsänen M, Salonen K, Anasonye F, Cajthaml T, Steffen KT, Jørgensen KS, Tuomela M (2014) Bioremediation of PAH-contaminated soil with fungi – from laboratory to field scale. Int Biodeterior Biodegradation 86:238–247

    Article  CAS  Google Scholar 

  • Xuanzhen L, Yan W, Shijin W, Lequan Q, Li G, Jingjing L, Bao Z, Weihong Z (2014) Peculiarities of metabolism of anthracene and pyrene by laccase-producing fungus Pycnoporus sanguineus H1. Biotechnol Appl Biochem 61(5):549–554

    Article  CAS  Google Scholar 

  • Yadav M, Yadav HS (2015) Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. Environ Chem Lett 13(3):309–318

    Article  CAS  Google Scholar 

  • Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017a) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017b) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Book  Google Scholar 

  • Zafra G, Absalón ÁE, Cuevas MDC, Cortés-Espinosa DV (2014) Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water Air Soil Pollut 225(2):1826

    Article  CAS  Google Scholar 

  • Zafra G, Absalón AE, Cortés-Espinosa DV (2015) Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz J Microbiol 46:937–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafra G, Taylor TD, Absalón AE, Cortés-Espinosa DV (2016) Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium. J Hazard Mater 318:702–710

    Article  CAS  PubMed  Google Scholar 

  • Zafra G, Absalón ÁE, Anducho-Reyes MÁ, Fernandez FJ, Cortés-Espinosa DV (2017) Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere 172:120–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43(4):812–819

    Article  CAS  Google Scholar 

  • Zhou Z-F, Wang M-X, Zuo X-H, Yao Y-H (2017) Comparative investigation of bacterial, fungal, and Archaeal community structures in soils in a typical oilfield in Jianghan, China. Arch Environ Contam Toxicol 72:65–77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the Ministry of Economy and Competitiveness (MINECO) and European Regional Development Fund (ERDF) funds for the Ramón y Cajal contract of EA (RYC-2013-12481). UC and DRO thank CONACyT Mexico for the postdoctoral fellowship (230592/209148/473970; 231581/454815, respectively). HPS acknowledges the Fulbright Program (PS00247479) for the Open Study/Research Grant. We would like to acknowledge the Environmental Microbiology Research Group [RNM-270] of the University of Granada (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabet Aranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conejo-Saucedo, U., Olicón-Hernández, D.R., Robledo-Mahón, T., Stein, H.P., Calvo, C., Aranda, E. (2019). Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs) Contaminated Soil Through Fungal Communities. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-25506-0_8

Download citation

Publish with us

Policies and ethics