Skip to main content

Bioconversion of Biomass to Biofuel Using Fungal Consortium

  • Chapter
  • First Online:
Book cover Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Depletion of fossil fuel resources along with their disadvantages including greenhouse gas emission, pollution, price enhancement, and increased demand of fuel leads to search for alternative fuel sources from renewable substrates. One of the major bottlenecks of global economy as well as environment sustainability is an urgent requirement for alternative fuel production and climate alteration diminution. Bioconversion of lignocellulosic biomass into biofuels is an unavoidable necessity for development of green economy. Biorefining of lignocellulosic biomass provides sustainable development of socioeconomic strategies. Low-value lignocellulose biomass (weed, by-products of wood, agro-residues, and recycle paper) is a favorable resource over traditional substrates. The biofuel production from lignocelluloses biomass by fungal consortium is cost-effective and eco-friendly process. Lignocellulosic plant sources consist of lignin, cellulose, and hemicellulose in various proportions. The hydrolysis of these polymeric components by fungal enzymes is a promising green approach. The development of fungal consortium and selection of microbial strains are a concern in this process. The fungal consortium composed of complex and diversified strains include cellulase, laccase, and xylanase enzyme-producing fungal strains along with ethanol-producing strains. Potential degradation of whole lignocellulosic substrates is possible by white-rot fungi. White-rot fungi is ubiquitous in nature; various strains including Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus, Cyathus stercoreus, etc. are significant strains for lignin degradation. Several advantages were reported by fungal consortium for biofuel (ethanol) production with high productivity and sustainable approach for solid waste management by green technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbogbo FK, Wenger KS (2007) Production of ethanol from corn Stover hemicellulose hydrolyzate using Pichia stipitis. J Ind Microbiol Biotechnol 34:723–727

    Article  CAS  Google Scholar 

  • Balan V, Chiaramonti D, Kumar S (2013) Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod Biorefin 7:732–759

    Article  CAS  Google Scholar 

  • Bacovsky D, Mabee W, Worgetter M (2010) How close are second-generation biofuels. Biofuels Bioprod Bioref 4:249–252

    Google Scholar 

  • Barakat A, Rouau X (2014) New dry technology of environmentally friendly biomass refinery: glucose yield and energy efficiency. Biotechnol Biofuels 7:138

    Article  Google Scholar 

  • Benimelia CS, Castroa GR, Chailec AP, Amoroso MJ (2007) Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. Int Biodeterior Biodegradation 59:148–155

    Article  Google Scholar 

  • Binod P, Janu KU, Sindhu R, Padey A (2010) Hydrolysis of lignocellulosic biomass for bioethanol production. In: Ashok P, Christian L, Ricke SC (eds) Biofuels: alternative Feedstock’s and conversion processes. Elsevier Inc, pp 229–250

    Google Scholar 

  • Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  CAS  Google Scholar 

  • Bradley C, Wood P, Kearns R, Black B (1989) Biological delignification of wood and straw for ethanol production via solid state culture. Final report, Montana Department of Natural Resources and Conservation, Montana

    Google Scholar 

  • Buruiana CT, Garrote G, Vizireanu C (2013) Bioethanol production from residual lignocellulosic materials: a review-Part-1. Food Technol 37:9–24

    CAS  Google Scholar 

  • Cabuk A, Unal AT, Kolankaya N (2006) Biodegradation of cyanide by a white rot fungus, Trametes versicolor. Biotechnol Lett 28:1313–1317

    Article  CAS  Google Scholar 

  • Campbell CJ, Laherrere JH (1998) The end of cheap oil. Sci Am 3:78–83

    Article  Google Scholar 

  • Cheng KK, Zhang JA, Chave ZE, Li JP (2010) Integrated production of xylitol and ethanol using corn cob. Appl Microbiol Biotechnol 87:411–417

    Google Scholar 

  • Chen S, Zhang X, Singh D, Yu H, Yang X (2010) Biological pre-treatment of lignocellulosics: potential, progress and challenges. Biofuelss 1:177–199

    Article  CAS  Google Scholar 

  • Claudio M, Jaime B, Juanita F, Regis T (2011) Mendonca bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment. J Ind Microbiol Biotechnol 38:1861–1866

    Article  Google Scholar 

  • Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG et al (2015) Lignocellulose degradation mechanism across the tree of life. Curr Opin Chem Biol 29:108–119

    Article  CAS  Google Scholar 

  • Daassi D, Zouri-Mechichi H, Frikha F, Rodriguez-Couto S, Nasri M, Mechichi T (2016) Sawdust waste as a low-cost support substrate for laccases production and adsorbent for azo dyes decolorization. J Environ Health Sci Eng 14:1–12

    Article  Google Scholar 

  • Das H, Singh SK (2004) Useful by products from cellulosic wastes of agriculture and food industry-a critical appraisal. Crit Rev Food Sci Nutr 44:77–89

    Article  Google Scholar 

  • Delfin AI, Duran de bazúa C (2003) Biodegradación de residuos urbanos lignocelulósicos por Pleurotus. Rev Int Contam Ambient 19:37–45

    Google Scholar 

  • Du W, Yu H, Song L, Zhang J, Weng C, Ma F, Zhang X (2011) The promising effects of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated corn stalks. Biotechnol Biofuels 4:37

    Article  CAS  Google Scholar 

  • Dumonceaux T, Bartholomew K, Valeanu L, Charles T, Archibald F (2001) Cellobiose dehydrogenase is essential for wood invasion by nonessential for Kraft pulp delignification and Trametes versicolor. Enzym Microb Technol 29:478–489

    Article  CAS  Google Scholar 

  • Fernández-Martín R, Domenech C, Cerdá-Olmedo E, Avalos J (2007) Ent-Kaurene and squalene synthesis in Fusarium fujikuroi cell-free extracts. Phytochemistry 54:723–728

    Article  Google Scholar 

  • Gao Z, Mori T, Kondo R (2012) The pretreatment of corn Stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis. Biotechnol Biofuels 5:28

    Article  CAS  Google Scholar 

  • Ghorbani F, Karimi M, Biria D, Kariminia HR, Jeihanipour A (2015) Enhancement of fungal delignification of Rice Straw by Trichoderma viride sp. to improve its saccharification. Biochem Eng J 101:77–84

    Article  CAS  Google Scholar 

  • Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  CAS  Google Scholar 

  • Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Appl Microbiol Biotechnol 18:350–357

    Article  CAS  Google Scholar 

  • Heinzkill M (1998) Characterization of laccases and peroxidases from wood rotting fungi. Appl Envion Microbiol 64:1601–1606

    CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103(30):11206–11210

    Article  CAS  Google Scholar 

  • Homma H, Shinoyama H, Nobuta Y, Terashima Y, Amachi S, Fujii T (2007) Lignin-degrading activity of edible mushroom Strobilurus ohshimae that forms fruiting bodies on buried soil (Cryptomeria japonica) twigs. J Wood Sci 53:80–84

    Article  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grim Wood J, Laplaza JM, Aerts A, Salamov A (2007) Genome sequence of the lignocellulose-bioconverting and xylose fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  CAS  Google Scholar 

  • Jian S, Ratna R, Sharma-Shivappa CM, Howell N (2008) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96

    Google Scholar 

  • Jonsson LJ, Martin C (2016) Pretreatment of lignocelluloses: formation of inhibitory by products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  Google Scholar 

  • Kim S and Dale BE (2004) Global potential bioethanol production form wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Forest Genet Biol 44:77–87

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW (2015) Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol Adv 33:191–202

    Article  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current prospectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  Google Scholar 

  • Liu S, Li X, Wu S, He J, Pang C, Deng Y, Dong R (2014) Fungal pre-treatment by Phanerochaete chrysosporium for enhancement of biogas production from corn Stover silage. Appl Biochem Biotechnol 174:1907–1918

    Article  CAS  Google Scholar 

  • Marnyye A, Velásquez C, Mata G, Michel SJ (2002) Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World J Microbiol Biotechnol 18:201–207

    Article  Google Scholar 

  • Márquez ATA, Mendoza MGD, González MSS (2007) Actividad fibrolitica de enzimas producidas por Trametes sp. EUM1, Pleurotus ostreatus IE8 y Aspergillus niger AD96.4 en fermentation solida. Interciencia 32:780–785

    Google Scholar 

  • Mc. Millan JD (1997) Biomass conversion bioethanol production: status and prospects. Renew Energy 10(2):295–302

    Article  CAS  Google Scholar 

  • Mikan VJF, Castellanos SDE (2004) Screening for isolation and characterisation of microorganisms and enzymes with useful potential for degradation of cellulose and hemicellulose. Rev Colomb Biotechnol 6:58–67

    Google Scholar 

  • Millati IR, Syamisiah S, Nikalasson C, Cahyanto MN, Lundquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white rot fungi and its applications: a review. Bioresources 6:5224

    Google Scholar 

  • Moilanen U, Winquist E, Mattila T, Hatakka A, Eerikainen T (2015) Production of manganese peroxidase and laccase in solid state bioreactor and modeling of enzyme production kinetics. Bioprocess Biosyst Eng 28:57–68

    Article  Google Scholar 

  • Moredo N, Lorenzo M, Domínguez A, Moldes D, Cameselle C, Sanroman A (2003) Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J Microbiol Biotechnol 19:665–669

    Article  CAS  Google Scholar 

  • Mustafa AM, Poulsen TG, Sheng K (2016) Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid state anaerobic digestion. Appl Energy 180:661–671

    Article  CAS  Google Scholar 

  • Nigam P, Pandey A (2009) Solid-state fermentation technology for bioconversion of biomass and agricultural residues. In: Biotechnology for agro-industrial residues utilization. Springer Netherlands, pp 197–221

    Google Scholar 

  • Okamoto K, Narayama S, Katsuo A, Shigemat sui I, Yanase H (2002) Biosynthesis of p-anisaldehyde by the white-rot basidiomycete Pleurotus ostreatus. J Biosci Bioeng 93:207–210

    Article  CAS  Google Scholar 

  • Park YS, Kang SW, Lee JS, Hong SI, Kim SW (2002) Xylanase production in solid state fermentation by Aspergillus Niger mutant using statistical experimental design. Appl Microbiol Biotechnol 58:762–766

    Google Scholar 

  • Pankajkumar RW, Rahul VK, Byong-Hun Jeon, Sanjay PG (2018) Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production. Biofuel Res J 5(3):846–853

    Google Scholar 

  • Pereira SR, Portugal-Nunes DJ, Evtuguin DV, Serafim LS, Xavier AMRB (2013) Advances in ethanol production from hard wood spent sulphite liquors. Process Biochem 48:272–282

    Article  CAS  Google Scholar 

  • Phutela UG, Sahni N (2012) Effect of Fusarium sp. on Paddy Straw digestibility and biogas production. J Adv Lab Res Biol 3:9–12

    Google Scholar 

  • Quintero DJC, Gumersindo FEJOOC, Lemar RJM (2006) Production of ligninolytic enzymes from basidiomycete fungi on lignocellulosic materials. Rev Facult Quim Farmaceut 13:61–67

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham, pp 1–62. https://doi.org/10.1007/978-3-030-10480-1_1

    Chapter  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham

    Book  Google Scholar 

  • Rezacova V, Hrselova H, Gryndlerová H, Mikšık I, Gryndler M (2006) Modifications of degradation-resistant soil organic matter by soil saprobic microfungi. Soil Biol Biochem 38:2292–2299

    Article  CAS  Google Scholar 

  • Rodriguez J, Ferraz A, Nogueira FPR, Ferrer I, Esposito E, Duran N (1997) Lignin biodegradation by the ascomycete Chrysonilia sitophila. Appl Biochem Biotechnol 63:233–242

    Article  Google Scholar 

  • Sanchez O, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feed stocks. Bioresour Technol 3:5270–5295

    Google Scholar 

  • Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2008) Biological pretreatment of sugar cane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24:667–673. https://doi.org/10.1007/s11274-007-9522-4

    Article  CAS  Google Scholar 

  • Songulashvili G, Elisashvili V, Penninckx M, Metreveli E, Hadar Y, Aladashvili N, Asatiani M (2005) Bioconversion of plant raw materials in value added products by Lentinus edodes (Berk.) Singer and Pleurotus spp. Int J Med Mushrooms 7(3):467–468

    Article  Google Scholar 

  • Sreenivas Rao R, Pavana Jyothi C, Prakasham RS, Sarma PN, Venkatestwar Rao L (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol 97:1974–1978

    Article  Google Scholar 

  • Srinivasan C, Dsouza TM, Boominathan K, Reddy CA (1995) Demonstration of laccase in white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 6:4274–4277

    Google Scholar 

  • Steven RW, Lee H (1990) Regulation of D-xylose utilization by hexoses in pentose fermenting yeasts. Biotechnol Adv 8(4):685–697

    Article  Google Scholar 

  • Tabassum Ansari F, Choube A (2012) Impact of biofuel in petrol engine-a review. Int J Thermal Technol 2(2):ISSN2277-4114

    Google Scholar 

  • Tampier M, Smith D, Bibeau E, Beauchemin PA (2004) Identifying environmental preferable uses for biomass resources, http://www.cec.org/giles/PDF/ECONOMY/Biomass-Stage-I-II_en.pdf

  • Tong P, Hong Y, Xiao Y, Zhang M, Tu X, Cui T (2007) High production of laccase by a new basidiomycete, Trametes sp. Biotechnol Lett 29:295–301

    Article  CAS  Google Scholar 

  • Villagran F, Renan J (1991) Simulación y modelo matemático de la delignification selective de la madera por hongos blancos en ambient natural. Temuco Universidad de la Frontera 24:465–487

    Google Scholar 

  • Voberkova S, Solcany V, Vrsanska M, Adam V (2018) Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere 202:694

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2010) Microbial pre treatment of corn Stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2011) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feed stocks. Bioresour Technol 102:7507–7512

    Article  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  Google Scholar 

  • Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yewale T, Panchwagh S, Rajagopalan S, Dhamole PB, Jain R (2016) Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech 6:75

    Article  Google Scholar 

  • Yu Y, Feng Y, Xu C, Liu J, Li D (2011) Onsite biodetoxification of steam exploded corn Stover for cellulosic ethanol production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2011.01.067

  • Zhang Z, Donaldson AA, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 35:367–375

    Google Scholar 

  • Zhang LY, Xia L, Liu Z, Pu Y (2014) Enhanced xylitol production from statistically optimized fermentation of corn stalk hydrolysate by immobilized Candida tropicalis. Chem Biochem Eng 28:87–93

    CAS  Google Scholar 

Download references

Acknowledgments

Authors sincerely acknowledge University Grant Commission (UGC), Government of India, for providing financial support for major research project entitled “Overcoming fossil fuel challenges: Co-culture fermentations for biofuel production using agro-industrial waste materials.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cherukuri, P.J., Akkina, R.C. (2019). Bioconversion of Biomass to Biofuel Using Fungal Consortium. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-25506-0_15

Download citation

Publish with us

Policies and ethics