Skip to main content

American Option Model and Negative Fichera Function on Degenerate Boundary

  • Chapter
  • First Online:
Modeling, Stochastic Control, Optimization, and Applications

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 164))

Abstract

We study American put option with stochastic volatility whose value function is associated with a 2-dimensional parabolic variational inequality with degenerate boundaries. Given the Fichera function on the boundary, we first analyze the existences of the strong solution and the properties of the 2-dimensional manifold for the free boundary. Thanks to the regularity result of the underlying PDE, we can also provide the uniqueness of the solution by the argument of the verification theorem together with the generalized Itos formula even though the solution may not be second order differentiable in the space variable across the free boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Aitsahlia, M. Goswami, and S. Guha. American option pricing under stochastic volatility: an efficient numerical approach. Computational Management Science, 2010.

    Google Scholar 

  2. E. Bayraktar, K. Kardaras, and H. Xing. Valuation equations for stochastic volatility models. SIAM Journal on Financial Mathematics, 3:351–373, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  3. X. Chen, Q. Song, F. Yi, and G. Yin. Characterization of stochastic control with optimal stopping in a Sobolev space Automatica, 49:1654-1662, 2013.

    Google Scholar 

  4. C. Chiarella, B. Kang, G. H. Meyer, and A. Ziogas. The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines. International Journal of Theoretical Applied Finance, 12: 393–425, 2009.

    Google Scholar 

  5. M. Crandall, H. Ishii, and P. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Ekstrom, and J. Tysk. The Black-Scholes equation in stochastic volatility models. Journal of Mathematical Analysis and Applications, 368:498–507, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Friedman. Partial Differential Equations of Parabolic Type. Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.

    Google Scholar 

  8. W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions, volume 25 of Stochastic Modelling and Applied Probability. Springer, New York, second edition, 2006.

    Google Scholar 

  9. S. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6: 327–343, 1993.

    Article  MATH  Google Scholar 

  10. J. C. Hull, and A. White. The pricing of options on assets with stochastic volatilities. The Journal of Finance, 42:281–300, 1987.

    Article  MATH  Google Scholar 

  11. H. J. Kushner and P. Dupuis. Numerical methods for stochastic control problems in continuous time, volume 24. Springer-Verlag, New York, second edition, 2001.

    Google Scholar 

  12. N. V. Krylov. Controlled diffusion processes, volume 14 of Applications of Mathematics. Springer-Verlag, New York, 1980.

    Book  MATH  Google Scholar 

  13. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural_ceva. Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1967.

    Google Scholar 

  14. G. M. Lieberman. Second Order Parabolic Differential Equations. World Scientific Publishing Co. Inc., River Edge, N.J., 1996.

    Google Scholar 

  15. B. Øksendal. Stochastic Differential Equations: An Introduction with Applications. 6th ed., Springer-Verlag, Berlin, 2003

    Google Scholar 

  16. O. A. Oleinik, E. V. Radkevich. Second Order Equations With Nonnegative Characteristic Form. Plenum Press, New York, 1973.

    Chapter  Google Scholar 

  17. K. Tso. On an Aleksandrov-Bakel′man type maximum principle for second-order parabolic equations. Comm. Partial Differential Equations, 10(5):543–553, 1985.

    Google Scholar 

  18. Jiongmin Yong and Xun Yu Zhou. Stochastic controls, volume 43 of Applications of Mathematics (New York). Springer-Verlag, New York, 1999. Hamiltonian systems and HJB equations.

    Google Scholar 

  19. G. Yin and Q. Zhang. Discrete-time Markov chains: Two-time-scale methods and applications, volume 55 of Applications of Mathematics (New York). Springer-Verlag, New York, 2005. Stochastic Modelling and Applied Probability.

    Google Scholar 

  20. S. Zhu, and W. Chen. Should an American option be exercised earlier of later if volatility is not assumed to ba a constant? International Journal of Theoretical and Applied Finance, 14: 1279–1297, 2011.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X., Jin, Z., Song, Q. (2019). American Option Model and Negative Fichera Function on Degenerate Boundary. In: Yin, G., Zhang, Q. (eds) Modeling, Stochastic Control, Optimization, and Applications. The IMA Volumes in Mathematics and its Applications, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-030-25498-8_5

Download citation

Publish with us

Policies and ethics