Skip to main content

H2 Dynamic Output Feedback Control for Hidden Markov Jump Linear Systems

  • Chapter
  • First Online:
Modeling, Stochastic Control, Optimization, and Applications

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 164))

Abstract

In this note, we discuss the design of H2 dynamic output feedback controllers for a class of jump systems whose switching is induced by a Markov chain. The observation model is based on hidden Markov chains, in which only a random variable conditioned on the jump process of the plant is available to the controller. In this context, we consider a type of sub-optimal ad hoc separation procedure in which a state-feedback controller is given in order to obtain the remaining controller matrices by means of the linear matrix inequality formulation. In the case of perfect observation of the Markov chain, the conditions also become necessary allowing us to calculate optimal H2 controllers also provided by the classical results of the literature. Clusterized and mode-independent controllers can also be synthesized via our formulation. Two illustrative examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberkane, S., Ponsart, J.C., Sauter, D.: Multiobjective output feedback control of a class of stochastic hybrid systems with state-dependent noise. Mathematical Problems in Engineering 2007(31561), 26 (2007). DOI https://doi.org/10.1155/2007/31561

    Article  MathSciNet  MATH  Google Scholar 

  2. Aberkane, S., Sauter, D., Ponsart, J.C.: Output feedback robust H∞ control of uncertain active fault tolerant control systems via convex analysis. International Journal of Control 81(2), 252–263 (2008). https://doi.org/10.1080/00207170701535959

    Article  MathSciNet  MATH  Google Scholar 

  3. Athans, M.: The role and use of the stochastic linear-quadratic-Gaussian problem in control system design. IEEE Transactions on Automatic Control 16(6), 529–552 (1971). https://doi.org/10.1109/tac.1971.1099818

    Article  MathSciNet  Google Scholar 

  4. Boukas, E.K.: Stochastic Switching Systems: Analysis and Design. Birkhäuser Basel, New York, NY, USA (2006). https://doi.org/10.1007/0-8176-4452-0

  5. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied and Numerical Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1994). https://doi.org/10.1137/1.9781611970777

  6. Chizeck, H.J., Ji, Y.: Optimal quadratic control of jump linear systems with Gaussian noise in discrete-time. In: Proceedings of the 27th IEEE Conference on Decision and Control, vol. 3, pp. 1989–1993. IEEE, New York City, NY, USA (1988). https://doi.org/10.1109/cdc.1988.194681

  7. Costa, O.L.V.: Discrete-time coupled Riccati equations for systems with Markov switching parameters. Journal of Mathematical Analysis and Applications 194(1), 197–216 (1995). DOI https://doi.org/10.1006/jmaa.1995.1294

    Article  MathSciNet  MATH  Google Scholar 

  8. Costa, O.L.V., Fragoso, M.D.: Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems. IEEE Transactions on Automatic Control 40(12), 2076–2088 (1995). https://doi.org/10.1109/9.478328

    Article  MathSciNet  MATH  Google Scholar 

  9. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems. Springer-Verlag London, New York City, NY, USA (2005). https://doi.org/10.1007/b138575

    Book  MATH  Google Scholar 

  10. Costa, O.L.V., Fragoso, M.D., Todorov, M.G.: Continuous-Time Markov Jump Linear Systems. Springer-Verlag Berlin Heidelberg, New York, NY, USA (2013). https://doi.org/10.1007/978-3-642-34100-7

    Book  MATH  Google Scholar 

  11. Costa, O.L.V., Fragoso, M.D., Todorov, M.G.: A detector-based approach for the H2 control of Markov jump linear systems with partial information. IEEE Transactions on Automatic Control 60(5), 1219–1234 (2015). https://doi.org/10.1109/tac.2014.2366253

  12. Costa, O.L.V., Marques, R.P.: Mixed H2/H∞-control of discrete-time Markovian jump linear systems. IEEE Transactions on Automatic Control 43(1), 95–100 (1998). https://doi.org/10.1109/9.654895

    Article  MathSciNet  Google Scholar 

  13. Costa, O.L.V., Tuesta, E.F.: H2-control and the separation principle for discrete-time Markovian jump linear systems. Mathematics of Control, Signals and Systems 16(4), 320–350 (2004). https://doi.org/10.1007/s00498-004-0142-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Daafouz, J., Bernussou, J.: Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Systems & Control Letters 43(5), 355–359 (2001). DOI https://doi.org/10.1016/S0167-6911(01)00118-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Davis, M.H.A., Vinter, R.B.: Stochastic Modelling and Control. Springer Netherlands, New York City, NY, USA (1985). https://doi.org/10.1007/978-94-009-4828-0

    Book  MATH  Google Scholar 

  16. Doyle, J.: Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control 23(4), 756–757 (1978). https://doi.org/10.1109/tac.1978.1101812

    Article  Google Scholar 

  17. Doyle, J., Stein, G.: Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control 26(1), 4–16 (1981). https://doi.org/10.1109/tac.1981.1102555

    Article  MATH  Google Scholar 

  18. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard H2 and H∞ control problems. IEEE Transactions on Automatic Control 34(8), 831–847 (1989). https://doi.org/10.1109/9.29425

    Article  MathSciNet  MATH  Google Scholar 

  19. Dragan, V., Morozan, T., Stoica, A.M.: Mathematical Methods in Robust Control of Linear Stochastic Systems. Springer, New York, NY, USA (2013). https://doi.org/10.1007/978-1-4614-8663-3

    Book  MATH  Google Scholar 

  20. Ducard, G.J.J.: Fault-tolerant Flight Control and Guidance Systems. Springer-Verlag London, New York City, NY, USA (2009). https://doi.org/10.1007/978-1-84882-561-1

    Book  MATH  Google Scholar 

  21. Fioravanti, A.R., Gonc¸alves, A.P.C., Geromel, J.C.: Discrete-time H∞ output feedback for Markov jump systems with uncertain transition probabilities. International Journal of Robust and Nonlinear Control 23(8), 894–902 (2013). https://doi.org/10.1002/rnc.2807

    Article  MathSciNet  MATH  Google Scholar 

  22. Georgiou, T.T., Lindquist, A.: The separation principle in stochastic control, redux. IEEE Transactions on Automatic Control 58(10), 2481–2494 (2013). https://doi.org/10.1109/tac.2013.2259207

    Article  MathSciNet  MATH  Google Scholar 

  23. Geromel, J.C., Gonc¸alves, A.P.C., Fioravanti, A.R.: Dynamic output feedback control of discrete-time Markov jump linear systems through linear matrix inequalities. SIAM Journal on Control and Optimization 48(2), 573–593 (2009). https://doi.org/10.1137/080715494

    Article  MathSciNet  MATH  Google Scholar 

  24. Gonc¸alves, A.P., Fioravanti, A.R., Geromel, J.C.: Markov jump linear systems and filtering through network transmitted measurements. Signal Processing 90(10), 2842–2850 (2010). DOI http://dx.doi.org/10.1016/j.sigpro.2010.04.007

    Article  MATH  Google Scholar 

  25. Gunckel, T.L., Franklin, G.F.: A general solution for linear, sampled-data control. ASME. Journal of Basic Engineering 85(2), 197–201 (1963). https://doi.org/10.1115/1.3656559

    Article  Google Scholar 

  26. Ji, Y., Chizeck, H.J.: Jump linear quadratic Gaussian control: Steady-state solution and testable conditions. Control, Theory and Advanced Technology 6, 289–319 (1990)

    Google Scholar 

  27. Joseph, D.P., Tou, T.J.: On linear control theory. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry 80(4), 193–196 (1961). https://doi.org/10.1109/tai.1961.6371743

    Google Scholar 

  28. K. Zhou, J.C.D., Glover, K.: Robust and Optimal Control. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1996)

    Google Scholar 

  29. Kalman, R.E.: Contributions to the theory of optimal control. Boletin de la Sociedad Matematica Mexicana 5, 102–149 (1960)

    Google Scholar 

  30. Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME. Journal of Basic Engineering 85, 35–45 (1960)

    Article  Google Scholar 

  31. Kalman, R.E., Bertram, J.E.: Control system analysis and design via the “second method” of Lyapunov: I continuos-time systems. ASME. Journal of Basic Engineering 82(2), 371–393 (1960). https://doi.org/10.1115/1.3662604

    Article  MathSciNet  Google Scholar 

  32. Kalman, R.E., Bertram, J.E.: Control system analysis and design via the “second method” of Lyapunov: Ii discrete-time systems. ASME. Journal of Basic Engineering 82(2), 394–400 (1960). https://doi.org/10.1115/1.3662605

    Article  MathSciNet  Google Scholar 

  33. Liu, X., Ma, G., Pagilla, P.R., Ge, S.S.: Dynamic output feedback asynchronous control of networked Markovian jump systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems pp. 1–11 (2018). https://doi.org/10.1109/tsmc.2018.2827166

  34. Mahmoud, M., Jiang, J., Zhang, Y.: Active Fault Tolerant Control Systems - Stochastic Analysis and Synthesis. Springer, Germany (2003)

    Google Scholar 

  35. Mariton, M.: Detection delays, false alarm rates and the reconfiguration of control systems. International Jounal of Control 49, 981–992 (1989). https://doi.org/10.1080/00207178908559680

    Article  MathSciNet  MATH  Google Scholar 

  36. Mariton, M.: Jump Linear Systems in Automatic Control. CRC Press, New York, NY, USA (1990)

    Google Scholar 

  37. Mehdi, D., Boukas, E.K., Bachelier, O.: Static output feedback design for uncertain linear discrete time systems. IMA Journal of Mathematical Control and Information 21(1), 1–13 (2004). https://doi.org/10.1093/imamci/21.1.1

    Article  MathSciNet  MATH  Google Scholar 

  38. Morais, C.F., Braga, M.F., Oliveira, R.C.L.F., Peres, P.L.D.: An LMI approach for H2 dynamic output feedback control of discrete-time Markov systems with uncertain probabilities. In: 2016 IEEE Conference on Computer Aided Control System Design (CACSD), pp. 1–6. IEEE, Buenos Aires, Argentina (2016). https://doi.org/10.1109/cacsd.2016.7602559

  39. Morais, C.F., Braga, M.F., Oliveira, R.C.L.F., Peres, P.L.D.: LMI-based design of H∞ dynamic output feedback controllers for mjls with uncertain transition probabilities. In: 2016 American Control Conference (ACC), pp. 5650–5655. IEEE, Boston, MA, USA (2016). https://doi.org/10.1109/acc.2016.7526556

  40. Morais, C.F., Braga, M.F., Oliveira, R.C.L.F., Peres, P.L.D.: Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems. International Journal of Control 90(11), 2368–2383 (2017). https://doi.org/10.1080/00207179.2016.1245871

    Article  MathSciNet  MATH  Google Scholar 

  41. de Oliveira, A.M., Costa, O.L.V.: H2-filtering for discrete-time hidden Markov jump systems. International Journal of Control 90(3), 599–615 (2017). DOI https://doi.org/10.1080/00207179.2016.1186844

    Article  MATH  Google Scholar 

  42. de Oliveira, A.M., Costa, O.L.V.: Mixed H2/H∞ control of hidden Markov jump systems. International Journal of Robust and Nonlinear Control 28(4), 1261–1280 (2018). https://doi.org/10.1002/rnc.3952

    Article  Google Scholar 

  43. de Oliveira, A.M., Costa, O.L.V., Daafouz, J.: Design of stabilizing dynamic output feedback controllers for hidden Markov jump linear systems. IEEE Control Systems Letters 2(2), 278–283 (2018). https://doi.org/10.1109/lcsys.2018.2829883

    Article  Google Scholar 

  44. de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability condition. Systems & Control Letters 37(4), 261–265 (1999). DOI https://doi.org/10.1016/S0167-6911(99)00035-3

    Article  MathSciNet  MATH  Google Scholar 

  45. de Oliveira, M.C., Geromel, J.C., Bernussou, J.: Design of dynamic output feedback decentralized controllers via a separation procedure. International Journal of Control 73(5), 371–381 (2000). https://doi.org/10.1080/002071700219551

    Article  MathSciNet  MATH  Google Scholar 

  46. Peaucelle, D., Arzelier, D.: An efficient numerical solution for H2 static output feedback synthesis. In: 2001 European Control Conference (ECC), pp. 3800–3805. IEEE, Porto, Portugal (2001). https://doi.org/10.23919/ecc.2001.7076526

  47. Ross, S.M.: Introduction to Probability Models, tenth edn. Academic Press, Inc., Orlando, FL, USA (2010)

    Google Scholar 

  48. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, Inc., USA (2005)

    Google Scholar 

  49. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. by Tamer Basar, E.: Control Theory: Twenty-Five Seminal Papers (1932-1981). Wiley-IEEE Press (2001). https://doi.org/10.1109/9780470544334.ch8

  51. Todorov, M.G., Fragoso, M.D., Costa, O.L.V.: Detector-based H∞ results for discrete-time Markov jump linear systems with partial observations. Automatica 91, 159–172 (2018). DOI https://doi.org/10.1016/j.automatica.2018.01.034

    Article  MathSciNet  MATH  Google Scholar 

  52. do Val, J.B., Geromel, J.C., Gonc¸alves, A.P.C.: The H2-control for jump linear systems: cluster observations of the Markov state. Automatica 38(2) (2002). DOI http://dx.doi.org/10.1016/S0005-1098(01)00210-2

  53. Vargas, A.N., Costa, E.F., do Val, J.: Advances in the Control of Markov Jump Linear Systems with No Mode Observation. Springer International Publishing, New York City, NY, USA (2016)

    Book  MATH  Google Scholar 

  54. Wonham, W.H.: On the separation theorem of stochastic control. SIAM Journal on Control 6, 312–326 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu, Z., Shi, P., Shu, Z., Su, H., Lu, R.: Passivity-based asynchronous control for Markov jump systems. IEEE Transactions on Automatic Control 62(4), 2020–2025 (2017). https://doi.org/10.1109/tac.2016.2593742

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. de Oliveria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveria, A.M., Costa, O.L.V., Daafouz, J. (2019). H2 Dynamic Output Feedback Control for Hidden Markov Jump Linear Systems. In: Yin, G., Zhang, Q. (eds) Modeling, Stochastic Control, Optimization, and Applications. The IMA Volumes in Mathematics and its Applications, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-030-25498-8_21

Download citation

Publish with us

Policies and ethics