Skip to main content

Imaging Tuberculosis and AIDS Associated Infections

  • Chapter
  • First Online:
Book cover Nuclear Medicine in Infectious Diseases

Abstract

About a quarter of the world population is infected with Mycobacterium tuberculosis. About 1–3 of every ten infected individuals will develop symptomatic tuberculosis (TB) in their lifetime. Microscopy and culture are the gold standards for diagnosis and treatment response assessment in TB management. The yield of microscopy and culture can be low; hence, other biomarkers are necessary to guide management. Imaging plays a supportive role in TB management. FDG PET/CT is a useful noninvasive imaging modality for pretreatment assessment, prediction, and monitoring of therapy response, and end-of-treatment prediction of relapse. FDG is nonspecific as it cannot differentiate TB from other infection/inflammatory condition or neoplastic disease. Evidence from preclinical studies is emerging to support the potential of mycobacterial-specific imaging using radiolabeled antimycobacterial drugs and other probes that specifically target the tubercle bacilli for noninvasive imaging and for studying biokinetics of commonly used chemotherapy drugs in TB treatment.

Immunosuppression associated with human immunodeficiency virus (HIV) infection predisposes people living with HIV (PLWHIV) to an array of opportunistic infections. PLWHIV also suffer from infections seen in immunocompetent individuals. Ga-67 citrate single photon emission imaging has played an essential role in the management of HIV-associated opportunistic infections. This role is now being slowly taken over by Ga-68 citrate PET/CT imaging due to the latter’s better image resolution, lower radiation burden, and wider availability.

Many newer probes with potential for clinical translation are being reported in the literature for SPECT and PET imaging of TB and other HIV-associated infections. In this chapter, we describe the clinical need for imaging in TB and other HIV-associated infections. We will then describe SPECT and PET imaging of these infectious diseases and concluded by giving our thoughts on the prospects of radionuclide imaging in the management TB and HIV-associated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modeling. PLoS Med. 2016;13:e1002152.

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. Global tuberculosis. https://www.who.int/tb/data/pdf. Assessed 15 Mar 2019.

  3. Center for Disease Control. AIDS-defining conditions. https://www.cdc.gov.mmwr.mmwrhtml.pdf. Assessed 15 Mar 2019.

  4. Cox JA, Kiggundu D, Elpert L, Meintjes G, Colebunders R, Alamo S. Temporal trends in death causes in adults attending an urban HIV clinic in Uganda: a retrospective chart review. BMJ Open. 2016;6:e008718.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin KY, Cheng CY, Li CW, Yang CJ, Tsai MS, Liu CE, et al. Trends and outcomes of late initiation of combination antiretroviral therapy driven by late presentation among HIV-positive Taiwanese patients in the era of treatment scale-up. PLoS One. 2017;12:e0179870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van der Kuyp F, Mahan CS. Prolonged positivity of sputum smears with negative cultures during treatment for pulmonary tuberculosis. Int J Tuberc Lung Dis. 2012;2012:1663–7.

    Article  Google Scholar 

  7. Phillips PPJ, Mendel CM, Nunn AJ, McHugh TD, Crook AM, Hunt R, et al. A comparison of liquid and solid culture for determining relapse and durable cure in phase III TB trials for new regimens. BMC Med. 2017;15:207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friedrich SO, Rachow A, Saathoff E, Singh K, Mangu CD, Dawson R, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assays as an early sputum biomarker for response to tuberculosis treatment. Lancet Respir Med. 2013;1:462–70.

    Article  CAS  PubMed  Google Scholar 

  9. Yeager H Jr, Lacy J, Smith LR, LeMaistre CA. Quantitative studies of mycobacterial populations in sputum and saliva. Am Rev Respir Dis. 1967;95(6):998–1004.

    PubMed  Google Scholar 

  10. Kang HK, Jeong BH, Lee H, Park HY, Jeon K, Huh HJ, et al. Clinical significance of smear positivity for acid-fast bacilli after ≥5 months of treatment in patients with drug-susceptible pulmonary tuberculosis. Medicine (Baltimore). 2016;95:31.

    Google Scholar 

  11. Wright PW, Wallace RJ Jr, Wright NM, Brown BA, Griffith DE. Sensitivity of fluorochrome microscopy for detection of Mycobacterium tuberculosis versus nontuberculous mycobacteria. J Clin Microbiol. 1998;36(4):1046–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mori T. Usefulness of interferon-gamma release assays for diagnosing TB infection and problems with these assays. J Infect Chemother. 2009;15(3):143–55.

    Article  CAS  PubMed  Google Scholar 

  13. Gati S, Chetty R, Wilson D, Achkar JM. Utilization and clinical value of diagnostic modalities for tuberculosis in a high HIV prevalence setting. Am J Trop Med Hyg. 2018;99:317–22.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lawal I, Zeevaart JR, Ebenhan T, Ankrah A, Vorster M, Kruger HG, et al. Metabolic imaging of infection. J Nucl Med. 2017;58:1727–32.

    Article  CAS  PubMed  Google Scholar 

  15. Jain SK. The promise of molecular imaging in the study and treatment of infectious diseases. Mol Imaging Biol. 2017;19:341–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ankrah AO, Span LFR, Klein HC, de Jong PA, Dierckx RAJO, Kwee TC, et al. Role of FDG PET/CT in monitoring treatment response in patients with invasive fungal infections. Eur J Nucl Med Mol Imaging. 2019;46:174–83.

    Article  CAS  PubMed  Google Scholar 

  17. Ankrah AO, Sathekge MM, Dierckx RA, Glaudemanns AW. Imaging fungal infections in children. Clin Transl Imaging. 2016;4:57–72.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Foss CA, Kulik L, Ordonez AA, Jain SK, Holers VM, Thurman JM, et al. SPECT/CT imaging of Mycobacterium tuberculosis infection with [125I]anti-C3d mAb. Mol Imaging Biol. 2019;21(3):473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;6:257. https://doi.org/10.3389/fimmu.2015.00257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bergmann-Leitner ES, Leitner WW, Tsokos GC. Complement 3d: from molecular adjuvant to target of immune escape mechanisms. Clin Immunol. 2006;121:177–85.

    Article  CAS  PubMed  Google Scholar 

  21. Mikusová K, Slayden RA, Besra GS, Brennan PJ. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother. 1995;39:2484–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Verma J, Bathnagar A, Sen S, Singh AK, Bose M. Radio-labeling ethambutol with technetium-99m and its evaluation for detection of tuberculosis. World J Nucl Med. 2005;4:35–46.

    Google Scholar 

  23. Causse JE, Pasqualini R, Cypriani B, Weil R, van der Valk R, Bally P, et al. Labeling of ethambutol with 99mTc using a new reduction procedure. Pharmacokinetic study in the mouse and rat. Int J Rad Appl Instrum A. 1990;41:493–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kartamihardja AHS, Kurniawati Y, Gunawan R. Diagnostic value of 99mTc-ethambutol scintigraphy in tuberculosis compared to microbiological and histopathological tests. Ann Nucl Med. 2018;32:60–8.

    Article  CAS  PubMed  Google Scholar 

  25. Diah LH, Kartamihardja AH. The role of technetium-99m-Ethambutol in the management of spinal tuberculosis. World J Nucl Med. 2019;18:13–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sigh N, Bhatnagar A. Clinical evaluation and efficacy of 99mTc-Ethambutol in tubercular lesion imaging. Tuberc Res Treat. 2010;2010:618051.

    Google Scholar 

  27. Singh AK, Verma J, Bhatnager A, Sen S. Tc-99m isoniazid: a specific agent for diagnosis of tuberculosis. World J Nucl Med. 2003;2:292–305.

    Google Scholar 

  28. Britton KE, Vinjamuri S, Hall AV, Solanki K, Siraj QH, Bomanji J, et al. Clinical evaluation of technetium-99m infection for the localization of bacterial infection. Eur J Nucl Med. 1997;24:553–6.

    CAS  PubMed  Google Scholar 

  29. Hall AV, Solanki KK, Vinjamuri S, Britton KE, Das SS. Evaluation of the efficacy of 99mTc-Infecton, a novel agent for detecting sites of infection. J Clin Pathol. 1998;51:215–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee M, Yoon M, Hwang KH, Choe W. Tc-99m ciprofloxacin SPECT of pulmonary tuberculosis. Nucl Med Mol Imaging. 2010;44:116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhardwaj V, Agrawal M, Suri T, Sural S, Kashyap R, Dhal A. Evaluation of adequacy of short-course chemotherapy for extraspinal osteoarticular tuberculosis using 99mTc ciprofloxacin. Int Orthop. 2011;35:1869–74.

    Article  PubMed  Google Scholar 

  32. Sharma R, Tewari KN, Bhatnagar A, Mondal A, Mishra AK, Singh AK, et al. Tc-99m ciprofloxacin scans for detection of tubercular bone infection. Clin Nucl Med. 2007;32:367–70.

    Article  PubMed  Google Scholar 

  33. Schuster DM, Alazraki N. Gallium and other agents in diseases of the lung. Semin Nucl Med. 2002;32:193–211.

    Article  PubMed  Google Scholar 

  34. Siemsen JK, Grebe SF, Sargent EN, Wentz D. Gallium-67 scintigraphy of pulmonary diseases as a complement to radiology. Radiology. 1976;118:371–5.

    Article  CAS  PubMed  Google Scholar 

  35. Goldfarb CR, Colp C, Ongseng F, Finestone H. Gallium scanning in the ‘new’ tuberculosis. Clin Nucl Med. 1997;22:470–4.

    Article  CAS  PubMed  Google Scholar 

  36. Yeh JJ, Huang YC, Teng WB, Chuang YW, Hsu CC. The role of gallium-67 scintigraphy in comparing inflammatory activity between tuberculous and nontuberculous mycobacterial pulmonary disease. Nucl Med Commun. 2011;32:392–401.

    Article  PubMed  Google Scholar 

  37. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N. Translocator protein (18kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov. 2010;9:971–88.

    Article  CAS  PubMed  Google Scholar 

  38. Zavala F, Haumont J, Lenfant M. Interaction of benzodiazepines with mouse macrophages. Eur J Pharmacol. 1984;106:561–6.

    Article  CAS  PubMed  Google Scholar 

  39. Foss CA, Harper JS, Wang H, Pomper MG, Jain SK. Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713. J Infect Dis. 2018;2013:2067–74.

    Google Scholar 

  40. Ordonez AA, Pokkali S, DeMarco VP, Klunk M, Mease RC, Foss CA, et al. Radioiodinated DPA-713 imaging correlates with bactericidal activity of tuberculosis treatment in mice. Antimicrob Agents Chemother. 2015;59:642–9.

    Article  CAS  PubMed  Google Scholar 

  41. Ahmadihosseini H, Abedi J, Ghodsi Rad MA, Zakavi SR, Knoll P, Mirzaei S, et al. Diagnostic utility of 99mTc-EDDA-tricine-HYNIC-Tyr3-octreotate SPECT for differentiation of active from inactive pulmonary tuberculosis. Nucl Med Commun. 2014;35:1262–7.

    Article  CAS  PubMed  Google Scholar 

  42. Utsunomiya K, Narabayashi I, Nishigaki H, Tsujimoto K, Kariyone S, Ohnishi S. Clinical significance of thallium-201 and gallium-67 scintigraphy in pulmonary tuberculosis. Eur J Nucl Med. 1997;24:252–7.

    CAS  PubMed  Google Scholar 

  43. Raziel G, Masjedi MR, Fotouhi F, Asli NI, Shafiei B, Javadi H, et al. The role of Tc-99m MIBI scintigraphy in the management of patients with pulmonary tuberculosis. Eur Rev Med Pharmacol Sci. 2012;16:622–9.

    Google Scholar 

  44. Degirmenci B, Kilinc O, Cirak KA, Capa G, Akpinar O, Halilcolar H, et al. Technetium-99m-tetrofosmin scintigraphy in pulmonary tuberculosis. J Nucl Med. 1998;39:116–20.

    Google Scholar 

  45. Gulaldi NC, Bayhan H, Ercan MT, Kibar M, Oztürk B, Ogretensoy M, et al. The visualization of pulmonary tuberculosis with Tc-99m (V) DMSA and Tc-99m citrate in comparison to Ga-67 citrate. Clin Nucl Med. 1995;20:1012–4.

    Article  CAS  PubMed  Google Scholar 

  46. The Antiretroviral Therapy Cohort Collaboration. Causes of death in HIV-1-infected patients treated with antiretroviral therapy, 1996-2006: collaborative analysis of 13 HIV cohort studies. Clin Infect Dis. 2010;50:1387–96.

    Article  Google Scholar 

  47. Lee CY, Tseng YT, Lin WR, Chen YH, Tsai JJ, Wang WH, et al. AIDS-related opportunistic illnesses and early initiation of HIV care remain critical in the contemporary HAART era: a retrospective cohort study in Taiwan. BMC Infect Dis. 2018;18:352.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kramer EL, Sanger JJ, Garay SM, Greene JB, Tiu S, Banner H, et al. Gallium-67 scans of the chest in patients with acquired immunodeficiency syndrome. J Nucl Med. 1987;28:1107–14.

    CAS  PubMed  Google Scholar 

  49. Rosso J, Guillon JM, Parrot A, Denis M, Akoun G, Mayaud C, et al. Technetium-99m-DTPA aerosol and Gallium-67 scanning in pulmonary complications of human immunodeficiency virus infection. J Nucl Med. 1992;33:81–7.

    CAS  PubMed  Google Scholar 

  50. Denning DW. Minimizing fungal disease death will allow UNAIDS target of reducing annual AIDS deaths below 500 000 by 20202 to be realized. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150468.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Welling MM, Lupetti A, Balter HS, Lazzeri S, Souto B, Rey AM, et al. 99mTc-Labeled antimicrobial peptides for detection of bacterial and Candida albicans infections. J Nucl Med. 2001;42:788–94.

    CAS  PubMed  Google Scholar 

  52. Sathekge M, Garcia-Perez O, Paez D, El-Haj N, Kain-Godoy T, Lawal I, et al. Molecular imaging in musculoskeletal infections with 99mTc-UBI 29-41 SPECT/CT. Ann Nucl Med. 2018;32:54–9.

    Article  CAS  PubMed  Google Scholar 

  53. Siaens R, Eijsink VGH, Dierckx R, Slegers G. 123I-labeled chitinase as specific radioligand for in vivo detection of fungal infections in mice. J Nucl Med. 2004;45:1209–16.

    CAS  PubMed  Google Scholar 

  54. Lupetti A, Welling MM, Mazzi U, Nibbering PH, Pauwels EKJ. Technetium-99m labeled fluconazole and antimicrobial peptides for imaging of Candida albicans and Aspergillus fumigatus infections. Eur J Nucl Med. 2002;29:674–9.

    Article  CAS  Google Scholar 

  55. Yang Z, Kontoyiannis DP, Wen X, Xiong C, Zhang R, Albert ND, et al. Gamma scintigraphy imaging of murine invasive pulmonary aspergillosis with a 111In-labeled cyclic peptide. Nucl Med Biol. 2009;36:259–66.

    Article  CAS  PubMed  Google Scholar 

  56. Sathekge MM, Maes A, Pottel H, Stoltz A, van de Wiele C. Dual time-point FDG PET-CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. S Afr Med J. 2010;100:598–601.

    Article  PubMed  Google Scholar 

  57. Vorster M, Sathekge MM, Bomanji J. Advances in imaging of tuberculosis: the role of 18F-FDG PET and PET/CT. Curr Opin Pulm Med. 2014;20:287–93.

    Article  PubMed  Google Scholar 

  58. Ankrah AO, Glaudemans AWJM, Maes A, van de Wiele C, Dierckx RAJO, Vorster M. Tuberculosis. Semin Nucl Med. 2018;48:108–30.

    Article  PubMed  Google Scholar 

  59. Lang D, Huber H, Kaiser B, Virgolini I, Lamprecht B, Gabriel M. SUV as a possible predictor of disease extent and therapy duration in complex tuberculosis. Clin Nucl Med. 2018;43:94–100.

    Article  PubMed  Google Scholar 

  60. Stelzmueller I, Huber H, Wunn R, Hodolic M, Mandi M, Lamprecht B, et al. 18F-FDG PET/CT in the initial assessment and for follow-up in patients with tuberculosis. Clin Nucl Med. 2016;41:e187–94.

    Article  PubMed  Google Scholar 

  61. Sathekge M, Maes A, Kgomo M, Stoltz A, Van de Wiele C. Use of 18F-FDG PET to predict response to first-line tuberculostatics in HIV-associated tuberculosis. J Nucl Med. 2011;52:880–5.

    Article  PubMed  Google Scholar 

  62. Sathekge M, Maes A, D’Asseler Y, Vorster M, Gongxeka H, Van de Wiele C. Tuberculous lymphadenitis: FDG PET and CT findings in responsive and nonresponsive disease. Eur J Nucl Med Mol Imaging. 2012;39:1184–90.

    Article  PubMed  Google Scholar 

  63. Martinez V, Castilla-Lievre MA, Guillet-Caruba C, Grenier G, Fior R, Desarnaud S, et al. 18F-FDG PET/CT in tuberculosis: an early non-invasive marker of therapeutic response. Int J Tuberc Lung Dis. 2012;16:1180–5.

    Article  CAS  PubMed  Google Scholar 

  64. Chen RY, Dodd LE, Lee M, Paripati P, Hammoud DA, Mountz JM, et al. PET/CT and high resolution CT as potential imaging biomarkers associated with treatment outcomes in MDR-TB. Sci Transl Med. 2014;6:265ra166.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dureja S, Sen IB, Acharya S. Potential role of F18 FDG PET-CT as an imaging biomarker for the noninvasive evaluation in uncomplicated skeletal tuberculosis: a prospective clinical observational study. Eur Spine J. 2014;23:2449–54.

    Article  PubMed  Google Scholar 

  66. Jeong YJ, Paeng JC, Nam HY, Lee JS, Lee SM, Yoo CG, et al. 18F-FDG positron-emission tomography/computed tomography findings of radiographic lesions suggesting old healed tuberculosis. J Korean Med Sci. 2014;29(3):386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sathekge MM, Ankrah AO, Lawal I, Vorster M. Monitoring response to therapy. Semin Nucl Med. 2017;48:166–81.

    Article  PubMed  Google Scholar 

  68. Hu Y, Mangan JA, Dhillon J, Sole KM, Mitchison DA, Butcher PD, et al. Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J Bacteriol. 2000;182:6358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Malherbe ST, Shenai S, Ronacher K, Loxton AG, Dolganov G, Kriel M, et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med. 2016;22(10):1094–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Esmail H, Lia RP, Lesosky M, Wilkinson KA, Graham CM, Coussens AK, et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18]fluoro-D-glucose positron emission and computed tomography. Nat Med. 2016;22:1090–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vorster M, Maes A, van de Wiele C, Sathekge M. Gallium-68 PET: a powerful generator-based alternative to infection and inflammation imaging. Semin Nucl Med. 2016;46:436–47.

    Article  PubMed  Google Scholar 

  72. Vorster M, Maes A, van de Wiele C, Sathekge M. 68Ga-citrate PET/CT in tuberculosis: a pilot study. Q J Nucl Med Mol Imaging. 2019;63:48–55.

    Article  PubMed  Google Scholar 

  73. Vorster M, Jacobs A, Malefahlo S, Pottel H, van de Wiele C, Sathekge M. Evaluating the possible role of 68Ga-citrate PET/CT in the characterization of indeterminate lung lesions. Ann Nucl Med. 2014;28:523–30.

    CAS  PubMed  Google Scholar 

  74. Ebenhan T, Mokaleng BB, Venter JD, Kruger HG, Zeevaart JR, Sathekge M. Preclinical assessment of a 68Ga-DOTA-functionalized depsipeptide as radiodiagnostic infection imaging agent. Molecules. 2017;22:1403.

    Article  CAS  PubMed Central  Google Scholar 

  75. Belton M, Brilha S, Manavaki R, Mauri F, Nijran K, Hong YT, et al. Hypoxia and tissue destruction in pulmonary TB. Thorax. 2016;71:1145–53.

    Article  PubMed  Google Scholar 

  76. Kang F, Wang S, Tian F, Zhao M, Zhang M, Wang Z, et al. Comparing the diagnostic potential of 68Ga-Alfatide II and 18F-FDG in differentiating between non-small cell lung cancer and tuberculosis. J Nucl Med. 2016;57:672–7.

    Article  CAS  PubMed  Google Scholar 

  77. Pyka T, Weirich G, Einspieler I, Maurer T, Theisen J, Hatzichristodoulou G, et al. 68Ga-PSMA-HBED-CC PET for differential diagnosis of suggestive lung lesions in patients with prostate cancer. J Nucl Med. 2016;57:367–71.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Z, Ordonez AA, Smith-Jones P, Wang H, Gogarty KR, Daryaee F, et al. The biodistribution of 5-[18F] fluoropyrazinamide in Mycobacterium tuberculosis-infected mice determined by positron emission tomography. PLoS One. 2017;12:e0170871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu L, Xu Y, Shea C, Fowler JS, Hooker JM, Tonge PJ. Radiosynthesis and bioimaging of the tuberculosis chemotherapeutics isoniazid, rifampicin and pyrazinamide in baboons. J Med Chem. 2010;53:2882–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weinstein EA, Liu L, Ordonez AA, Wang H, Hooker JM, Tonge PJ, et al. Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother. 2012;56:6284–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. DeMarco VP, Ordonez AA, Klunk M, Prideaux B, Wang H, Zhuo Z, et al. Determination of [11C] rifampin pharmacokinetics within Mycobacterium tuberculosis-infected mice by using dynamic positron emission tomography bioimaging. Antimicrob Agents Chemother. 2015;59:5768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tucker EW, Guglieri-Lopez B, Ordonez AA, Ritchie B, Klunk MH, Sharma R, et al. Noninvasive 11C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci Transl Med. 2018;10:eaau0965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bray M, Di Mascio M, de Kok-Mercado F, Mollura DJ, Jagoda E. Radiolabeled antiviral drugs and antibodies as virus-specific imaging probes. Antiviral Res. 2010;88:129–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Orlowski HLP, McWilliams S, Mellnick VM, Bhalla S, Lubner MG, Pickhardt PF, et al. Imaging spectrum of invasive fungal and fungal-like infections. Radiographics. 2017;37:1119–34.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike M. Sathekge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lawal, I.O., Sathekge, M.M. (2020). Imaging Tuberculosis and AIDS Associated Infections. In: Signore, A., Glaudemans, A. (eds) Nuclear Medicine in Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-25494-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25494-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25493-3

  • Online ISBN: 978-3-030-25494-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics