Skip to main content

Role of Imaging in the Management of Patients with Potentially Resectable CRLM

  • Chapter
  • First Online:
Colorectal Cancer Liver Metastases

Abstract

Imaging studies are integral for the identification of potential surgical candidates and planning hepatic resection in patients with colorectal liver metastases (CRLM). Modalities such as ultrasound (US), multidetector computed tomography (MDCT), magnetic resonance imaging (MRI), and positron emission tomography (PET) are used for CRLM and hepatic assessment. This chapter will discuss the current role of these imaging modalities in the management of patients with potentially resectable CRLM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. House MG. Safely expanding the criteria for resectability of hepatic colorectal metastases. Ann Surg. 2011;253:1080–1.

    Article  PubMed  Google Scholar 

  2. Legou F, Chiaradia M, Baranes L, et al. Imaging strategies before beginning treatment of colorectal liver metastases. Diagn Interv Imaging. 2014;95(5):505–12.

    Article  PubMed  CAS  Google Scholar 

  3. Robinson PJ. The effects of cancer chemotherapy on liver imaging. Eur Radiol. 2009;19(7):1752–62.

    Article  PubMed  Google Scholar 

  4. Florani I, Torri V, Rulli E, et al. Performance of imaging modalities in diagnosis of liver metastases from colorectal cancer: a systematic review and meta-analysis. J Magn Reson Imaging. 2010;31:19–31.

    Article  Google Scholar 

  5. Larsen LP, Rosenkilde M, Christensen H, et al. Can contrast-enhanced ultrasonography replace multidetector-computed tomography in the detection of liver metastases from colorectal cancer? Eur J Radiol. 2009;69:308–13.

    Article  PubMed  Google Scholar 

  6. Cantisani V, Ricci P, Erturk M, et al. Detection of hepatic metastases from colorectal cancer: prospective evaluation of gray scale US versus SonoVue® low mechanical index real time-enhanced US as compared with multidetector-CT or Gd-BOPTA-MRI. Ultraschall Med. 2010;31:500–5.

    Article  PubMed  CAS  Google Scholar 

  7. Piscaglia F, Bolondi L, Italian Society for Ultrasound in M, Biology Study Group on Ultrasound Contrast A. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol. 2006;32:1369–75.

    Article  PubMed  Google Scholar 

  8. Sawhney S, Wilson SR. Can ultrasound with contrast enhancement replace nonenhanced computed tomography scans in patients with contraindication to computed tomography contrast agents? Ultrasound Q. 2017;33(2):125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. D’Onofrio M, Crosara S, De Robertis R, et al. Contrast-enhanced ultrasound of focal liver lesions. AJR Am J Roentgenol. 2015;205(1):W56–66.

    Article  PubMed  Google Scholar 

  10. Lucchese AM, Kalil AN, Schwengber A, Suwa E, Rolim de Moura GG. Usefulness of intraoperative ultrasonography in liver resections due to colon cancer metastasis. Int J Surg. 2015;20:140–4.

    Article  PubMed  Google Scholar 

  11. Ellebæk SB, Fristrup CW, Mortensen MB, et al. Intraoperative ultrasound as a screening modality for the detection of liver metastases during resection of primary colorectal cancer-a systematic review. Ultrasound Int Open. 2017;3(2):E60–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ruzzenente A, Conci S, Iacono C, et al. Usefulness of contrast-enhanced intraoperative ultrasonography (CE-IOUS) in patients with colorectal liver metastases after preoperative chemotherapy. J Gastrointest Surg. 2013;17:281–7.

    Article  PubMed  Google Scholar 

  13. Claudon M, Dietrich CF, Choi BI, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver–update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultraschall Med. 2013;34(1):11–29.

    PubMed  CAS  Google Scholar 

  14. Dietrich CF, Ignee A, Greis C, et al. Artifacts and pitfalls in contrast-enhanced ultrasound of the liver. Ultraschall Med. 2014;35:108–25.

    Article  PubMed  CAS  Google Scholar 

  15. Kaur H, Hindman NM, Al-Refaie WB, et al. ACR appropriateness criteria® suspected liver metastases. J Am Coll Radiol. 2017;14:S314–25.

    Article  PubMed  Google Scholar 

  16. Ong KO, Leen E. Radiological staging of colorectal liver metastases. Surg Oncol. 2007;16(1):7–14.

    Article  PubMed  Google Scholar 

  17. Tirumani S, Kim KW, Nishino M, Howard SA, Krajewski KM, Jagannathan JP. Update on the role of imaging in management of metastatic colorectal cancer. Radiographics. 2014;34:1908–28.

    Article  PubMed  Google Scholar 

  18. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology. Colon Cancer (version 1. 2017). Accessed 30 Apr 2018. Available from: http://www.nccn.org.

  19. Choi SH, Kim SY, Park SH, et al. Diagnostic performance of CT, gadoxetate disodium-enhanced MRI, and PET/CT for the diagnosis of colorectal liver metastasis: systematic review and meta-analysis. J Magn Reson Imaging. 2018;47(5):1237–50.

    Article  PubMed  Google Scholar 

  20. Wicherts DA, de Haas RJ, van Kessel CS, et al. Incremental value of arterial and equilibrium phase compared to hepatic venous phase CT in the preoperative staging of colorectal liver metastases: an evaluation with different reference standards. Eur J Radiol. 2011;77:305–11.

    Article  PubMed  Google Scholar 

  21. Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV. Oncologic applications of dual-energy CT in the abdomen. Radiographics. 2014;34(3):589–612.

    Article  PubMed  Google Scholar 

  22. Leng S, Yu L, Fletcher JG, McCollough CH. Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual monoenergetic dual-energy CT. Radiology. 2015;276(2):562–70.

    Article  PubMed  Google Scholar 

  23. Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology. 2010;257(3):674–84.

    Article  PubMed  Google Scholar 

  24. Pawlik TM, Olino K, Gleisner AL, Torbenson M, Schulick R, Choti MA. Preoperative chemotherapy for colorectal liver metastases: impact on hepatic histology and postoperative outcome. J Gastrointest Surg. 2007;11(7):860–8.

    Article  PubMed  Google Scholar 

  25. Nicola R, Shaqdan KW, Aran S, Mansouri M, Abujudeh HH. Contrast-induced nephropathy: identifying the risks, choosing the right agent, and reviewing effective prevention and management methods. Curr Probl Diagn Radiol. 2015;44(6):501–4.

    Article  PubMed  Google Scholar 

  26. Chung YE, You JS, Lee HJ, et al. Possible contrast media reduction with low keV monoenergetic images in the detection of focal liver lesions: a dual-energy CT animal study. PLoS One. 2015;10(7):e0133170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang LJ, Peng J, Wu SY, et al. Liver virtual non-enhanced CT with dual-source, dual-energy CT: a preliminary study. Eur Radiol. 2010;20:2257–64.

    Article  PubMed  Google Scholar 

  28. De Cecco CN, Buffa V, Fedeli S, et al. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. Eur Radiol. 2010;20(12):2870–5.

    Article  PubMed  Google Scholar 

  29. Robinson E, Babb J, Chandarana H, et al. Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Investig Radiol. 2010;45(7):413–8.

    Article  Google Scholar 

  30. Yamada Y, Jinzaki M, Tanami Y, Abe T, Kuribayashi S. Virtual monochromatic spectral imaging for the evaluation of hypovascular hepatic metastases: the optimal monochromatic level with fast kilovoltage switching dual-energy computed tomography. Investig Radiol. 2012;47(5):292–8.

    Article  Google Scholar 

  31. Kulemann V, Schima W, Tamandl D, et al. Preoperative detection of colorectal liver metastases in fatty liver: MDCT or MRI? Eur J Radiol. 2011;79(2):e1–6.

    Article  PubMed  Google Scholar 

  32. Vilgrain V, Esvan M, Ronot M, Caumont-Prim A, Aube C, Chatellier G. A meta-analysis of diffusion-weighted and gadoxetic acid-enhanced MR imaging for the detection of liver metastases. Eur Radiol. 2016;26(12):4595–615.

    Article  PubMed  Google Scholar 

  33. Zech CJ, Korpraphong P, Huppertz A, et al. Randomized multicentre trial of gadoxetic acid-enhanced MRI versus conventional MRI or CT in the staging of colorectal cancer liver metastases. Br J Surg. 2014;101(6):613–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kim HJ, Lee SS, Byun JH, et al. Incremental value of liver MR imaging in patients with potentially curable colorectal hepatic metastasis detected at CT: a prospective comparison of diffusion-weighted imaging, gadoxetic acid-enhanced MR imaging, and a combination of both MR techniques. Radiology. 2015;274(3):712–22.

    Article  PubMed  Google Scholar 

  35. Colagrande S, Castellani A, Nardi C, Lorini C, Calistri L, Filippone A. The role of diffusion-weighted imaging in the detection of hepatic metastases from colorectal cancer: a comparison with unenhanced and Gd-EOB-DTPA enhanced MRI. Eur J Radiol. 2016;85:1027–34.

    Article  PubMed  Google Scholar 

  36. Siegelman ES, Chauhan A. MR characterization of focal liver lesions: pearls and pitfalls. Magn Reson Imaging Clin N Am. 2014;22:295–313.

    Article  PubMed  Google Scholar 

  37. Owen JW, Fowler KJ, Doyle MB, Saad NE, Linehan DC, Chapman WC. Colorectal liver metastases: disappearing lesions in the era of Eovist hepatobiliary magnetic resonance imaging. HPB (Oxford). 2016;18:296–303.

    Article  Google Scholar 

  38. Hardie AD, Egbert RE, Rissing MS. Improved differentiation between hepatic hemangioma and metastases on diffusion-weighted MRI by measurement of standard deviation of apparent diffusion coefficient. Clin Imaging. 2015;39:654–8.

    Article  PubMed  Google Scholar 

  39. Shenoy-Bhangle A, Baliyan V, Kordbacheh H, Guimaraes AR, Kambadakone A. Diffusion weighted magnetic resonance imaging of liver: principles, clinical applications and recent updates. World J Hepatol. 2017;9(26):1081–91.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Papathanassiou D, Bruna-Muraille C, Liehn JC, et al. Positron emission tomography in oncology: present and future of PET and PET/CT. Crit Rev Oncol Hematol. 2008;72:239–54.

    Article  PubMed  Google Scholar 

  41. Maas M, Rutten IJ, Nelemans PJ, Lambregts DM, Cappendijk VC, Beets GL, Beets-Tan RG. What is the most accurate whole-body imaging modality for assessment of local and distant recurrent disease in colorectal cancer? A meta-analysis : imaging for recurrent colorectal cancer. Eur J Nucl Med Mol Imaging. 2011;38:1560–71.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cantwell CP, Setty BN, Holalkere N, et al. Liver lesion detection and characterization in patients with colorectal cancer: a comparison of low radiation dose non-enhanced PET/CT, contrast-enhanced PET/CT, and liver MRI. J Comput Assist Tomogr. 2008;32:738–44.

    Article  PubMed  Google Scholar 

  43. Wiering B, Adang EM, van der Sijp JR, et al. Added value of positron emission tomography imaging in the surgical treatment of colorectal liver metastases. Nucl Med Comm. 2010;31:938–44.

    Article  Google Scholar 

  44. Agarwal A, Marcus C, Xiao J, et al. FDG PET/CT in the management of colorectal and anal cancers. AJR Am J Roentgenol. 2014;203:1109–19.

    Article  PubMed  Google Scholar 

  45. Pelosi E, Messa C, Sironi S, et al. Value of integrated PET/CT for lesion localization in cancer patients: a comparative study. J Comput Assist Tomogr. 2005;29(4):554–9.

    Article  Google Scholar 

  46. Maffione AM, Lopci E, Bluemel C, Giammarile F, Herrmann K, Rubello D. Diagnostic accuracy and impact on management of 18F-FDG PET and PET/CT in colorectal liver metastasis: a meta-analysis and systematic review. Eur J Nucl Med Mol Imaging. 2015;42:152–63.

    Article  PubMed  CAS  Google Scholar 

  47. Lee DH, Lee JM, Hur BY, Joo I, Yi NJ, Suh KS, et al. Colorectal cancer liver metastases: diagnostic performance and prognostic value of PET/MR imaging. Radiology. 2016;280:782–92.

    Article  PubMed  Google Scholar 

  48. Lee DH, Lee JM. Whole-body PET/MRI for colorectal cancer staging: is it the way forward? J Magn Reson Imaging. 2017;45(1):25–35.

    Article  Google Scholar 

  49. Beiderwellen K, Geraldo L, Ruhlmann V, et al. Accuracy of [18F]FDG PET/MRI for the detection of liver metastases. PLoS One. 2015;10:e0137285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kong G, Jackson C, Koh DM, et al. The use of 18F-FDG PET/CT in colorectal liver metastases–comparison with CT and liver MRI. Eur J Nucl Med Mol Imaging. 2008;35:1323–9.

    Article  PubMed  CAS  Google Scholar 

  51. Adie S, Yip C, Chu F, Morris DL. Resection of liver metastases from colorectal cancer: does preoperative chemotherapy affect the accuracy of PET in preoperative planning? ANZ J Surg. 2009;79:358–61.

    Article  PubMed  Google Scholar 

  52. Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011;38:55–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ruers TJ, Wiering B, Joost R, et al. Improved selection of patients for hepatic surgery of colorectal liver metastases with 18F-FDG PET: a randomized study. J Nucl Med. 2009;50:1036–41.

    Article  PubMed  Google Scholar 

  54. Fayad H, Schmidt H, Wuerslin C, et al. Reconstruction-incorporated respiratory motion correction in clinical simultaneous PET/MR imaging for oncology applications. J Nucl Med. 2015;56:884–9.

    Article  PubMed  Google Scholar 

  55. Sahani D, Mehta A, Blake M, Prasad S, Harris G, Saini S. Preoperative hepatic vascular evaluation with CT and MR angiography: implications for surgery. Radiographics. 2004;24:1367–80.

    Article  PubMed  Google Scholar 

  56. Catalano OA, Singh AH, Uppot RN, et al. Vascular and biliary variants in the liver: implications for liver surgery. Radiographics. 2008;28:359–78.

    Article  PubMed  Google Scholar 

  57. Karlo C, Reiner CS, Stolzmann P, et al. CT- and MRI-based volumetry of resected liver specimen: comparison to intraoperative volume and weight measurements and calculation of conversion factors. Eur J Radiol. 2010;75(1):e107–11.

    Article  PubMed  CAS  Google Scholar 

  58. D’Onofrio M, De Robertis R, Demozzi E, Crosara S, Canestrini S, Pozzi Mucelli R. Liver volumetry: is imaging reliable? Personal experience and review of the literature. World J Radiol. 2014;6:62–71.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ferrero A, Vigano L, Polastri R, Muratore A, Eminefendic H, Regge D, Capussotti L. Postoperative liver dysfunction and future remnant liver: where is the limit? Results of a prospective study. World J Surg. 2007;31:1643–51.

    Article  PubMed  Google Scholar 

  60. van Lienden KP, van den Esschert JW, de Graaf W, Bipat S, Lameris JS, van Gulik TM, et al. Portal vein embolization before liver resection: a systematic review. Cardiovasc Intervent Radiol. 2013;36(1):25–34.

    Article  PubMed  Google Scholar 

  61. Ulla M, Ardiles V, Levy-Yeyati E, Alvarez FA, Spina JC, Garcia-Mónaco RD, De Santibañes E. New surgical strategy to induce liver hypertrophy: role of MDCT-volumetry to monitor and predict liver growth. Hepato-Gastroenterology. 2013;60:337–42.

    PubMed  Google Scholar 

  62. Evrard S, Rivoire M, Arnaud J-P, et al. Unresectable colorectal cancer liver metastases treated by intraoperative radiofrequency ablation with or without resection. Br J Surg. 2012;99:558–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Anushri Parakh, MD, for her feedback during the editing process of the manuscript and assistance with the liver volumetry application.

Disclosures

Grant support was received from GE Healthcare and the Advisory Board of Allena Pharma; royalties are received from Elsevier Publishing for textbook on Abdomen Imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid W. Shaqdan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaqdan, K.W., Pourvaziri, A., Sahani, D.V. (2020). Role of Imaging in the Management of Patients with Potentially Resectable CRLM. In: Correia, M., Choti, M., Rocha, F., Wakabayashi, G. (eds) Colorectal Cancer Liver Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-25486-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25486-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25485-8

  • Online ISBN: 978-3-030-25486-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics