Skip to main content

Navigation and Augmented Reality for Liver Surgery

  • Chapter
  • First Online:
Colorectal Cancer Liver Metastases

Abstract

Navigated liver surgery with or without augmented reality has been a trend within the field of minimally invasive liver surgery. In this chapter, we review recent publications regarding this interesting topic. Historical landmarks of the technical developments are cited, detailing how the navigation process has developed, which is then followed by a brief description of the equipment and the navigation workflow. We address its potential applications, possible obstacles, and solutions proposed. There is lack of sound evidence regarding the clear benefits of these technologies, but we list some available published clinical data and their potential benefits. This chapter closes with reports of the integration of newer technologies with liver surgery navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

3-Dimensional

AR:

Augmented reality

CT:

Computer tomography

DICOM:

Digital imaging and communications in medicine

EMTS:

Electromagnetic tracking system

FIGS:

Fluorescence image-guided surgery

IGLR:

Image-guided liver resection

IGLS:

Image-guided liver surgery

IOUS:

Intraoperative ultrasound

MIS:

Minimally invasive surgery

MRI:

Magnetic resonance imaging

MWA:

Microwave ablation

NS:

Navigated surgery

RFA:

Radiofrequency ablation

VLM:

Vanished liver metastases

References

  1. Couinaud C. Liver lobes and segments: notes on the anatomical architecture and surgery of the liver. Presse Med. 1954;62(33):709–12.

    CAS  PubMed  Google Scholar 

  2. Couinaud C. Le foie: etudes anatomiques et chirurgicales. Paris: Masson; 1957.

    Google Scholar 

  3. Enchev Y. Neuronavigation: geneology, reality, and prospects. Neurosurg Focus. 2009;27(3):E11.

    Article  Google Scholar 

  4. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbeck’s Arch Surg. 2013;398(4):5–14.

    Article  Google Scholar 

  5. Zernov DN. L’encéphalometrie. Rev Gen Clin Ther. 1890;19:302.

    Google Scholar 

  6. Roberts DW, Strohbehn JW, Hatch JF, et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986;65(4):545–9.

    Article  CAS  Google Scholar 

  7. Watanabe E, Watanabe T, Manaka S, et al. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol. 1987;27(6):543–7.

    Article  CAS  Google Scholar 

  8. Bucholz RD. System for indicating the position of a surgical probe within a head on an image of the head. 1995.

    Google Scholar 

  9. Bucholz R, McDurmont L. The history, current status, and future of the stealthstation treatment guidance system. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. Berlin: Springer; 2009.

    Google Scholar 

  10. Marescaux J, Diana M, Soler L. Augmented reality and minimally invasive surgery. J Gastroenterol Hepatol Res. 2013;2(5):555–60.

    Google Scholar 

  11. Tang SL, Kwoh CK, Teo MY, Sing NW, Ling KV. Augmented reality systems for medical applications. IEEE Eng Med Biol Mag. 1998;17(3):49–58.

    Article  CAS  Google Scholar 

  12. Correia MM, et al. The introduction of navigation in liver surgery in Brazil. Rev Col Bras Cir. 2014;41(6):451–4.

    Article  Google Scholar 

  13. Cloyd JM, et al. Image-guided liver surgery. In: Barrese JC, Henderson JM. The neurosurgical origins of image-guided surgery. Curr Probl Surg. 2015;52:491–7.

    Google Scholar 

  14. Warmann, et al. Computer-assisted surgery planning in children with complex liver tumors identifies variability of the classical Couinaud Classification. J Pediatr Surg. 2016;51(11):1801–6.

    Article  Google Scholar 

  15. Ryu M, Cho A. [Usefulness of image-navigated surgery in liver surgery]. Nihon Geka Gakkai Zasshi. 2008;109(2):71–6.

    Google Scholar 

  16. Zhao J, Zhou XJ, Zhu CZ, et al. 3D simulation assisted resection of giant hepatic mesenchymal hamartoma in children. Comput Assist Surg. 2017;22(1):54–9.

    Article  Google Scholar 

  17. Yamanaka J, Okada T, Saito S, et al. Minimally invasive laparoscopic liver resection: 3D MDCT simulation for preoperative planning. J Hepatobiliary Pancreat Surg. 2009;16(6):808–15.

    Article  Google Scholar 

  18. Herfarth C, Lamadé W, Fischer L, et al. The effect of virtual reality and training on liver operation planning. Swiss Surg. 2002;8(2):67–73.

    Article  CAS  Google Scholar 

  19. Högemann D, Stamm G, Shin H, et al. [Individual planning of liver surgery interventions with a virtual model of the liver and its associated structures]. Radiologe. 2000;40(3):267–73.

    Google Scholar 

  20. Radtke A, Sotiropoulos GC, Molmenti EP, et al. Computer-assisted surgery planning for complex liver resections: when is it helpful? A single-center experience over an 8-year period. Ann Surg. 2010;252(5):876–83.

    Article  Google Scholar 

  21. Fang CH, Li XF, Li Z, et al. Application of a medical image processing system in liver transplantation. Hepatobiliary Pancreat Dis Int. 2010;9(4):370–5.

    PubMed  Google Scholar 

  22. Tinguely P, Fusaglia M, Freedman J, et al. Laparoscopic image-based navigation for microwave ablation of liver tumors-a multi-center study. Surg Endosc. 2017;31(10):4315–24.

    Article  Google Scholar 

  23. Baegert C, Villard C, Schreck P, Soler L, Gangi A. Trajectory optimization for the planning of percutaneous radiofrequency ablation of hepatic tumors. Comput Aided Surg. 2007;12(2):82–90.

    Article  Google Scholar 

  24. Aoki T, Murakami M, Fujimori A, et al. Routes for virtually guided endoscopic liver resection of subdiaphragmatic liver tumors. Langenbeck’s Arch Surg. 2016;401(2):263–73.

    Article  Google Scholar 

  25. Freedman J, Nilsson H, Jonas E. New horizons in ablation therapy for hepatocellular carcinoma. Hepat Oncol. 2015;2(4):349–58.

    Article  Google Scholar 

  26. Banz VM, Müller PC, Tinguely P, et al. Intraoperative image-guided navigation system: development and applicability in 65 patients undergoing liver surgery. Langenbeck’s Arch Surg. 2016;401(4):495–02.

    Article  Google Scholar 

  27. Voirin D, Payan Y, Amavizca M, Létoublon C, Troccaz J. Computer-aided hepatic tumour ablation: requirements and preliminary results. C R Biol. 2002;325(4):309–19.

    Article  Google Scholar 

  28. Oldhafer KJ, Stavrou GA, Prause G, et al. How to operate a liver tumor you cannot see. Langenbeck’s Arch Surg. 2009;394(3):489–94.

    Article  Google Scholar 

  29. Huber T, Baumgart J, Peterhans M, et al. Computer-assisted 3D-navigated laparoscopic resection of a vanished colorectal liver metastasis after chemotherapy. Z Gastroenterol. 2016;54(1):40–3.

    Article  CAS  Google Scholar 

  30. Yeo CT, MacDonald A, Ungi T, et al. Utility of 3D reconstruction of 2D liver computed tomography/magnetic resonance images as a surgical planning tool for residents in liver resection surgery. J Surg Educ. 2017;S1931–7204(17):30384–7.

    Google Scholar 

  31. Li H, Shi X, Liang Y, et al. [Application values of computer-assisted preoperative planning of hilar cholangiocarcinoma]. Zhonghua Yi Xue Za Zhi. 2015;95(6):412–15.

    Google Scholar 

  32. Cash DM, Miga MI, Glasgow SC, et al. Concepts and preliminary data toward the realization of image-guided liver surgery. J Gastrointest Surg. 2007;11(7):844–59.

    Article  Google Scholar 

  33. Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry. 1983;46(9):797–803.

    Article  CAS  Google Scholar 

  34. Beller S, Eulenstein S, Lange T, et al. Upgrade of an optical navigation system with a permanent electromagnetic position control: a first step towards “navigated control” for liver surgery. J Hepatobiliary Pancreat Surg. 2009;16(2):165–70.

    Article  Google Scholar 

  35. Peterhans M, vom Berg A, Dagon B, et al. A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot. 2011;7(1):7–16.

    Article  CAS  Google Scholar 

  36. Kingham TP, Scherer MA, Neese BW, et al. Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound. HPB (Oxford). 2012;14(9):594–603.

    Article  Google Scholar 

  37. Kingham TP, Jayaraman S, Clements LW, et al. Evolution of image-guided liver surgery: transition from open to laparoscopic procedures. J Gastrointest Surg. 2013;17(7):1274–82.

    Article  Google Scholar 

  38. Hammil CW, Clements LW, Stefansic JD, et al. Evaluation of a minimally invasive image-guided surgery system for hepatic ablation procedures. Surg Innov. 2014;21(4):419–26.

    Article  Google Scholar 

  39. Phutane P, Buc E, Poirot K, et al. Preliminary trial of augmented reality performed on a laparoscopic left hepatectomy. Surg Endosc. 2018;32(1):514–5.

    Article  Google Scholar 

  40. Hildebrand P, Kleemann M, Schlichting S, et al. Prototype of an online navigation system for laparoscopic radiofrequency ablation. Hepatogastroenterology. 2009;56(96):1710–3.

    CAS  PubMed  Google Scholar 

  41. Wen R, Tay WL, Nguyen BP, et al. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput Methods Prog Biomed. 2014;116(2):68–80.

    Article  Google Scholar 

  42. Kenngott HG, Wagner M, Gondan M, et al. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc. 2014;28(3):933–40.

    Article  Google Scholar 

  43. Shahin O, Beširević A, Kleemann M, Schlaefer A. Ultrasound-based tumor movement compensation during navigated laparoscopic liver interventions. Surg Endosc. 2014;28(5):1734–41.

    Article  Google Scholar 

  44. Sauer IM, Queisner M, Tang P, et al. Mixed reality in visceral surgery: development of a suitable workflow and evaluation of intraoperative use-cases. Ann Surg. 2017;266(5):706–12.

    Article  Google Scholar 

  45. Kleemann M, Deichmann S, Esnaashari H, Besirevic A, Shahin O, Bruch HP, Laubert T. Laparoscopic navigated liver resection: technical aspects and clinical practice in benign liver tumors. Case Rep Surg. 2012;2012:265918. https://doi.org/10.1155/2012/265918. Epub 2012 Oct 22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Endnote

I would like to deeply thank the researchers that have developed with me the 3D LIVER tool for volumetric liver reconstruction which raised my interest for IGLS (Dario Oliveira and Raul Feitosa from the Pontifícia Universidade Católica do Rio e Janeiro); those who helped me understand how navigation works and the challenges we face, such as James D. Stefansic (Pathfinder Radiotherapeutics Inc), Mathias Peterhans (CASCINATION), and Michele Diana (Institute for Hybrid Image-Guided Minimally Invasive Surgery IHU Strasbourg) for sharing with me huge volume of information and finally Bruno Cassaro (EXIMIUS, ARTIS TECNOLOGIA) for initiating IGLS and long-lasting collaboration in NLS in Brazil. Special thanks to Prof Jacques Marescaux for being a formidable example for those who wish to dedicate part of their lives to contribute somehow in tailoring a better future for mankind.

I would also like to thank the special efforts of two coworkers and institutional management leaders whose understanding and dedicated efforts made navigated liver surgery possible in the National Cancer Institute of Brazil, namely, José Paulo de Jesus and Reinaldo Rondinelli.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Correia, M.M. (2020). Navigation and Augmented Reality for Liver Surgery. In: Correia, M., Choti, M., Rocha, F., Wakabayashi, G. (eds) Colorectal Cancer Liver Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-25486-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25486-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25485-8

  • Online ISBN: 978-3-030-25486-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics