Advertisement

Propagation Channels

  • Marcelo S. AlencarEmail author
  • Valdemar C. da Rocha Jr.
Chapter
  • 404 Downloads

Abstract

The objective of this chapter is to  compare the main types of wireless communication channel models with respect to capacity, transmission speed, operation characteristics, cost, and operability.

References

  1. Bello, P. A. (1963). Characterization of randomly time-variant linear channels. IEEE Transactions on Communications Systems, 360–393.CrossRefGoogle Scholar
  2. Blahut, R. E. (1990). Digital Transmission of Information. Reading, MA: Addison-Wesley Publishing Co.Google Scholar
  3. Blake, Ian F. (1987). An Introduction to Applied Probability. Malabar, FL: Robert E. Krieger Publishing Co.Google Scholar
  4. Bultitude, R. J. C. (1987). Measurement, characterization and modeling of indoor 800/900 MHz radio channels for digital communications. IEEE Communications Magazine, 25(6), 5–12.CrossRefGoogle Scholar
  5. Devasirvatham, D. M. J. (1984). Time delay measurements of wideband radio signals within a building. Electronics Letters, 20(23), 950–951.CrossRefGoogle Scholar
  6. Gagliardi, R. M. (1988). Introduction to communications engineering. New York: Wiley.Google Scholar
  7. Gersho, A. (1969). Adaptive equalization of highly dispersive channels for data transmission. The Bell System Technical Journal, 1, 55–71.CrossRefGoogle Scholar
  8. Hashemi, H. (1991). Principles of digital indoor radio propagation. In IASTED International Symposium on Computers, Electronics, Communication and Control (pp. 271–273). Canada: Calgary.Google Scholar
  9. Kennedy, R. S. (1969). Fading Dispersive Communication Channels. New York: Wiley Interscience.Google Scholar
  10. Lafortune, J.-F., & Lecours, M. (1990a). Measurement and modeling of propagation losses in a building at 900 MHz. IEEE Transactions on Vehicular Technology, 39(2), 101–108.CrossRefGoogle Scholar
  11. Lafortune, J.-F., & Lecours, M. (1990b). Measurement and modeling of propagation losses in a building at 900 mhz. IEEE Transactions on Vehicular Technology, 39(2).Google Scholar
  12. Lecours, M., Chouinard, J.-Y., Delisle, G. Y., & Roy, J. (1988). Statistical modeling of the received signal envelope in a mobile radio channel. IEEE Transactions on Vehicular Technology, 37(4), 204–212.CrossRefGoogle Scholar
  13. Lee, W. C. Y. (1989). Mobile Cellular Telecommunications Systems. New York, USA: McGraw-Hill Book Company.Google Scholar
  14. Leon-Garcia, A. (1989). Probability and Random Processes for Electrical Engineering. Reading, MA: Addison-Wesley Publishing Co.Google Scholar
  15. Macchi, C., Jouannaud, J.-P., & Macchi, O. (1975). Récepteurs Adaptatifs pour Transmission de Données a Grande Vitesse. Annales des Télécommunications, 30(9–10), 311–330.CrossRefGoogle Scholar
  16. Newman, D. B, Jr. (1986). FCC authorizes spread spectrum. IEEE Communications Magazine, 24(7), 46–47.CrossRefGoogle Scholar
  17. Pahlavan, K., Ganesh, R., & Hotaling, T. (1989). Multipath propagation measurements on manufacturing floors at 910 MHz. Electronics Letters, 25(3), 225–227.CrossRefGoogle Scholar
  18. Proakis, J. G. (1990). Digital communications. New York: McGraw-Hill Book Company.Google Scholar
  19. Qureshi, S. U. H. (1985). Adaptive equalization. Proceedings of the IEEE, 73(9), 1349–1387.CrossRefGoogle Scholar
  20. Rappaport, T. S. (1989). Indoor radio communications for factories of the future. IEEE Communications Magazine, 15–24.CrossRefGoogle Scholar
  21. Saleh, A. A. M., & Valenzuela, R. A. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.CrossRefGoogle Scholar
  22. Schwartz, M. (1970). Information transmission, modulation, and noise. New York: McGraw-Hill.Google Scholar
  23. Schwartz, M., Bennett, W., & Stein, S. (1966). Communication systems and techniques. New York: McGraw-Hill.Google Scholar
  24. Shepherd, N. H. (Ed.). (1988). Received signal fading distribution. IEEE Transactions on Vehicular Technology, 37(1), 57–60.Google Scholar
  25. Thom, D. (1991). Characterization of indoor wireless channel in the presence of multipath fading. In Report 1, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada.Google Scholar
  26. Valenzuela, R. A. (1989). Performance of adaptive equalization for indoor radio communications. IEEE Transactions on Communications, 37(3), 291–293.CrossRefGoogle Scholar
  27. Yacoub, M. D. (1993). Foundations of Mobile Radio Engineering. Boca Raton, USA: CRC Press.Google Scholar
  28. Yegani, P., & Mcgillen, C. D. (1991). A statistical model for the factory radio channel. IEEE Transactions on Communications, 29(10), 1445–1454.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marcelo S. Alencar
    • 1
    Email author
  • Valdemar C. da Rocha Jr.
    • 2
  1. 1.Institute of Advanced Studies in CommunicationsFederal University of BahiaSalvadorBrazil
  2. 2.Institute of Advanced Studies in CommunicationsFederal University of PernambucoRecifeBrazil

Personalised recommendations