Advertisement

Angle Modulation

  • Marcelo S. AlencarEmail author
  • Valdemar C. da Rocha Jr.
Chapter
  • 419 Downloads

Abstract

It is well established nowadays that a frequency-modulated signal can not be accommodated in a bandwidth which is narrower than the one occupied by the original, or modulating, signal. Ironically, though, frequency modulation was originally conceived as a means to reduce the bandwidth required for the transmission of a given signal.

References

  1. Alencar, M. S. (1989). Measurement of the probability density function of communication signals. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference—IMTC’89 (pp. 513–516). Washington, DC.Google Scholar
  2. Alencar, M. S., & Neto, B. G. A. (1991). Estimation of the probability density function by spectral analysis: A comparative study. In Proceedings of the Treizième Colloque sur le Traitement du Signal et des Images–GRETSI (pp. 377–380). Juan-Les-Pins, France.Google Scholar
  3. Armstrong, E. H. (1936). A method of reducing disturbances in radio signaling by a system of frequency modulation. Proceedings of the IRE, 24, 689–740.CrossRefGoogle Scholar
  4. Blachman, N. M., & McAlpine, G. A. (1969). The spectrum of a high-index FM waveform: Woodward’s theorem revisited. IEEE Transactions on Communications Technology, 17(2).Google Scholar
  5. Carlson, B. A. (1975). Communication systems. Tokyo, Japan: McGraw-Hill.zbMATHGoogle Scholar
  6. Carson, J. R. (1922). Notes on the theory of modulation. Proceedings of the IRE.Google Scholar
  7. Gagliardi, R. M. (1988). Introduction to communications engineering. New York: Wiley.Google Scholar
  8. Haykin, S. (1988). Digital communications. New York: Wiley.Google Scholar
  9. Lee, W. C. Y. (1989). Mobile cellular telecommunications systems. New York, USA: McGraw-Hill Book Company.Google Scholar
  10. McMahon, E. L. (1964). An extension of Price’s theorem. IEEE, PGIT, 10.Google Scholar
  11. Paez, M. D., & Glisson, T. H. (1972). Minimum mean-squared-error quantization in speech PCM and DPCM systems. IEEE Transactions on Communications, 225–230.Google Scholar
  12. Papoulis, A. (1981). Probability, random variables, and stochastic processes. Tokyo: McGraw-Hill.zbMATHGoogle Scholar
  13. Papoulis, A. (1983a). Signal analysis. Tokyo: McGraw-Hill.zbMATHGoogle Scholar
  14. Papoulis, A. (1983b). Random modulation: A review. IEEE Transactions on Acoustics, Speech and Signal Processing, 31(1), 96–105.CrossRefGoogle Scholar
  15. Price, R. (1958). A useful theorem for non-linear devices having Gaussian inputs. IRE, PGIT, 46(4).Google Scholar
  16. Woodward, P. M. (1952). The spectrum of random frequency modulation. Memo. 666, Telecommunications Research Establishment, Great Malvern, England.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marcelo S. Alencar
    • 1
    Email author
  • Valdemar C. da Rocha Jr.
    • 2
  1. 1.Institute of Advanced Studies in CommunicationsFederal University of BahiaSalvadorBrazil
  2. 2.Institute of Advanced Studies in CommunicationsFederal University of PernambucoRecifeBrazil

Personalised recommendations