Skip to main content

Coherency Estimation in Power Systems: A Koopman Operator Approach

  • Chapter
  • First Online:
Computational Intelligence and Optimization Methods for Control Engineering

Abstract

Integrating a significant amount of non-synchronous generation into power systems creates new technical challenges for transmission systems. The research and understanding of the impact of the non-synchronous generation through back-to-back Full Rated Converters’ (FRCs) on power system’s coherency is a matter of importance. Coherency behavior under the presence of large inclusion of non-synchronous generation requires more research, in order to understand the forming groups, after a disturbance, when the inertia is decreasing due to the decoupling. This document presents the application of the so-called Koopman Operator for the identification of coherent groups in power systems with the influence of non-synchronous generation. The Koopman Analysis clusters the coherent groups based on the measurements obtained. The visualization of the coherent groups identified allows to observe their dynamic variations according to the penetration level or fault location. The applied method of coherency identification is evaluated in the Nordic test system through gradually increasing integration of non-synchronous generations and different fault scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjornstedt, J.: Integration of non-synchronous generation—frequency dynamics. PhD thesis (2012)

    Google Scholar 

  2. Chamorro, H.R., Ordonez, C.A., Peng, J.C., Ghandhari, M.: Non-synchronous generation impact on power systems coherency. IET Gener. Transm. Distrib. 10(10), 2443–2453 (2016)

    Article  Google Scholar 

  3. Bongiorno, M., Petterson, A.: Development of a method for evaluation of wind turbines ability to fulful Swedish grid codes. Tech. Rep. Elforsk Rapport 09(25) (2009)

    Google Scholar 

  4. Blaabjerg, F., Liserre, M., Ma, K.: Power electronics converters for wind turbine systems. IEEE Trans. Ind. Appl. 48(2), 708–719 (2012)

    Article  Google Scholar 

  5. Hui, J., Jain, P.: Power management and control of a wind energy conversion system (WECS) with a fuzzy logic based maximum power point tracking (MPPT). In: IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, pp. 5966–5971 (2012)

    Google Scholar 

  6. Lalor, G., Mullane, A., OMalley, M.: Frequency control and wind turbine technologies. IEEE Trans. Power Syst. 20(4), 1905–1913 (2005)

    Article  Google Scholar 

  7. Wang, Y., Delille, G., Bayem, H., Guillaud, X., Francois, B.: High wind power penetration in isolated power systems—assessment of wind inertial and primary frequency responses. IEEE Trans. Power Syst. 28(3), 2412–2420 (2013)

    Article  Google Scholar 

  8. Chamorro, H.R., Sanchez, A.C., Overjordet, A., Jimenez, F., Gonzalez-Longatt, F., Sood, V.K.: Distributed synthetic inertia control in power systems. In: 2017 International Conference on Energy and Environment (CIEM), pp. 74–78 (2017)

    Google Scholar 

  9. Muljadi, E., Gevorgian, V., Singh, M., Santos, S.: Understanding inertial and frequency response of wind power plants. In: IEEE Power Electronics and Machines in Wind Applications (PEMWA), pp. 1–8 (2012)

    Google Scholar 

  10. Brisebois, J., Aubut, N.: Wind farm inertia emulation to fulfill hydro-Quebec specific need. In: IEEE Power and Energy Society General Meeting, pp. 1–7 (2011)

    Google Scholar 

  11. Chavez, H., Baldick, R., Sharma, S.: Regulation adequacy analysis under high wind penetration scenarios in ERCOT nodal. IEEE Trans. Sustain. Energy 3(4), 743–750 (2012)

    Article  Google Scholar 

  12. Finley, A., Kosterev, D.: Planning efforts to evaluate dynamic response of increased penetration of variable generation within the western interconnection. In: IEEE Power and Energy Society General Meeting, pp. 1–8 (2012)

    Google Scholar 

  13. Gautam, D., Vittal, V., Harbour, T.: Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems. IEEE Trans. Power Syst. 24(3), 1426–1434 (2009)

    Article  Google Scholar 

  14. Chamorro, H.R., Ghandhari, M., Eriksson, R.: Influence of the increasing non-synchronous generation on small signal stability. In: IEEE PES General Meeting|Conference & Exposition, National Harbor, pp. 1–5 (2014)

    Google Scholar 

  15. Eftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B., Loehr, J.: Small signal stability assessment of power systems with increased penetration of photovoltaic generation: a case study. IEEE Trans. Sustain. Energy 4(4), 960–967 (2013)

    Article  Google Scholar 

  16. Bueno, P.G., Hernández, J.C., Ruiz-Rodriguez, F.J.: Stability assessment for transmission systems with large utility-scale photovoltaic units. IET Renew. Power Gener. 10(5), 584–597 (2016)

    Article  Google Scholar 

  17. Naik, P., Qureshi, W., Nair, N.-K.: Identification of coherent generator groups in power system networks with wind-farms. In: Universities Power Engineering Conference (AUPEC) pp. 1–5 (2011)

    Google Scholar 

  18. Gallai, A., Thomas, R.: Coherency identification for large electric power . IEEE Trans. Circuits Syst. 29(11), 777–782 (1982)

    Article  Google Scholar 

  19. Lee, S.T.Y., Schweppe, F.C.: Distance measures and coherency recognition for transient stability equivalents. IEEE Trans. Power Appar. Syst. 92(5), 1550–1557 (1973)

    Article  Google Scholar 

  20. Podmore, R.: Identification of coherent generators for dynamic equivalents. IEEE Trans. Power Appar. Syst. 97(4), 1344–1354 (1978)

    Article  Google Scholar 

  21. Jonsson, M., Begovic, M., Daalder, J.: A new method suitable for real-time generator coherency determination. IEEE Trans. Power Syst. 19(3), 1473–1482 (2004)

    Article  Google Scholar 

  22. Chow, J., Galarza, R., Accari, P., Price, W.: Inertial and slow coherency aggregation algorithms for power system dynamic model reduction. IEEE Trans. Power Syst. 10(2), 680–685 (1995)

    Article  Google Scholar 

  23. Winkelman, J.R., Chow, J., Bowler, B.C., Avramovic, B., Kokotovic, P.: An analysis of interarea dynamics of multimachine systems. IEEE Trans. Power Appar. Syst. PAS-100(2), 754–763 (1981)

    Article  Google Scholar 

  24. Agrawal, R., Thukaram, D.: Support vector clustering-based direct coherency identification of generators in a multi-machine power system. IET Gener. Transm. Distrib. 7(12), 1357–1366 (2013)

    Article  Google Scholar 

  25. Djukanovic, M., Sobajic, D.J., Pao, Y.H.: Artificial neural network based identification of dynamic equivalents. Electric Power Syst. Res. 24(1), 39–48 (1992)

    Article  Google Scholar 

  26. Lino, O., Fette, M., Dong, Z., Ramirez, J.: Nonlinear approaches for dynamic equivalencing in power systems. In: Power Systems Conference and Exposition, pp. 1306–1314 (2006)

    Google Scholar 

  27. Wang, M.-H., Chang, H.-C.: Novel clustering method for coherency identification using an artificial neural network. IEEE Trans. Power Syst. 9(4), 2056–2062 (1994)

    Article  Google Scholar 

  28. Verma, K., Niazi, K.R.: Generator coherency determination in a smart grid using artificial neural network. In: IEEE Power and Energy Society General Meeting, pp. 1–7 (2012)

    Google Scholar 

  29. Tianqi, L., Jun, W., Xuan, L., Xingyuan, L.: A fuzzy clustering method for coherent generator groups identification based on A-K. In: International Conference on Sustainable Power Generation and Supply, 2009. SUPERGEN 09, pp. 1–4, Apr 2009

    Google Scholar 

  30. Wang, S.-C., Lee, S.-C., Wu, C.-J.: Analysis of Taiwan power system dynamic performance and coherency identification of synchronous generators using fuzzy c-means clustering. In: Proceedings of SICE Annual Conference (SICE), pp. 1420–1425 (2011)

    Google Scholar 

  31. Gil, M., Rios, M., Gomez, O.: Coherency identification based on maximum spanning tree partitioning. In: IEEE PowerTech (POWERTECH), pp. 1–6 (2013)

    Google Scholar 

  32. Wei, J., Kundur, D.: A multi-flock approach to rapid dynamic generator coherency identification. In: IEEE Power and Energy Society General Meeting (PES), pp. 1–5 (2013)

    Google Scholar 

  33. Avdakovic, S., Becirovic, E., Nuhanovic, A., Kusljugic, M.: Generator coherency using the wavelet phase difference approach. IEEE Trans. Power Syst. 29(1), 271–278 (2014)

    Article  Google Scholar 

  34. Senroy, N.: Generator coherency using the Hilbert Huang transform. IEEE Trans. Power Syst. 23(4), 1701–1708 (2008)

    Article  Google Scholar 

  35. Xu, G., Vittal, V.: Slow coherency based cutset determination algorithm for large power systems. IEEE Trans. Power Syst. 25(2), 877–884 (2010)

    Article  Google Scholar 

  36. Rios, M., Gomez, O.: Identification of coherent groups and PMU placement for inter-area monitoring based on graph theory. In: IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America) pp. 1–7 (2011)

    Google Scholar 

  37. Susuki, Y., Mezic, I.: Nonlinear Koopman modes and coherency identification of coupled swing dynamics. IEEE Trans. Power Syst. 26(4), 1894–1904 (2011)

    Article  Google Scholar 

  38. Petersen, K.E.: Ergodic Theory. English, Reprint edition. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  39. Lasota, A., Mackey, M.C.: Chaos.: Fractals, and Noise Stochastic Aspects of Dynamics. English, 2nd edn. Springer, New York (1998)

    Google Scholar 

  40. Raak, F., Susuki, Y., Hikihara, T., Chamorro, H.R., Ghandhari, M.: Partitioning power grids via nonlinear Koopman mode analysis. In: Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5 (2014)

    Google Scholar 

  41. Mezic, I.: Spectral properties of dynamical systems, model reduction and decomposition. Nonlinear Dyn. 41(1–3), 309–325 (2005)

    Article  MathSciNet  Google Scholar 

  42. Susuki, Y., Mezic, I.: Nonlinear Koopman modes of coupled swing dynamics and coherency identification. In: IEEE Power and Energy Society General Meeting, pp. 1–8 (2010)

    Google Scholar 

  43. Susuki, Y., Mezic, I., Raak, F., Hikihara, T.: Applied Koopman operator for power systems technology. Nonlinear Theory Appl. 7(4), 430–459 (2016)

    Google Scholar 

  44. Bialek, J.: Why has it happened again? Comparison between the UCTE blackout in 2006 and the blackouts of 2003. In: IEEE Power Tech Lausanne, pp. 51–56 (2007)

    Google Scholar 

  45. Alsafih, H.A., Dunn, R.: Determination of coherent clusters in a multi-machine power system based on wide-area signal measurements. In: IEEE Power and Energy Society General Meeting, pp. 1–8 (2010)

    Google Scholar 

  46. Koch, S., Chatzivasileiadis, S., Vrakopoulou, M., Andersson, G.: Mitigation of cascading failures by real-time controlled islanding and graceful load shedding. In: Bulk Power System Dynamics and Control (iREP)-VI

    Google Scholar 

  47. Terzija, V.: Wide area monitoring protection and control—WAMPAC. In: IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), Dec 2007

    Google Scholar 

  48. Moreno, R., Rios, M., Torres, A.: Security schemes of power systems against blackouts. In: 2010 iREP Symposium on Bulk Power System Dynamics and Control (iREP)-VIII (iREP), pp. 1–6, Aug 2010

    Google Scholar 

  49. Larsson, S., Ek, E.: The black-out in southern Sweden and eastern Denmark, September 23, 2003. In: IEEE Power Engineering Society General Meeting, vol. 2, pp. 1668–1672, June 2004

    Google Scholar 

  50. Norris, S., Shao, H., Bialek, J.: Considering voltage stress in preventive islanding. In: PowerTech (POWERTECH), 2013 IEEE Grenoble, Grenoble, pp. 1–6 (2013)

    Google Scholar 

  51. You, H., Vittal, V., Yang, Z.: Self-healing in power systems: an approach using islanding and rate of frequency decline based load shedding. IEEE Trans. Power Syst. 18(1), 174–181 (2003)

    Article  Google Scholar 

  52. Hiyama, T.: Coherency-based identification of optimum site for stabilizer applications. IEE Proc. C (Gener. Transm. Distrib.) 130(2), 71–74 (1983)

    Article  Google Scholar 

  53. Parsa, M., Toyoda, J.: Slow-coherency based composite mode oscillatory stabilization by means of a hybrid PSS. IEEE Trans. Power Syst. 4(4), 1499–1506 (1989)

    Article  Google Scholar 

  54. Zarghami, M., Crow, M., Jagannathan, S.: Nonlinear control of FACTS controllers for damping interarea oscillations in power. IEEE Trans. Power Deliv. 25(4), 3113–3121 (2010)

    Google Scholar 

  55. Chenine, M., Ullberg, J., Nordstrom, L., Wu, Y., Ericsson, G.: A framework for wide-area monitoring and control systems interoperability and cybersecurity. IEEE Trans. Power Deliv. 29(2), 633–641 (2014)

    Google Scholar 

  56. Sun, K., Luo, X., Wong, J.: Early warning of wide-area angular stability problems using synchrophasors. In: IEEE Power and Energy Society General Meeting, pp. 1–6, July 2012

    Google Scholar 

  57. Li, W., Bose, A.: A coherency based rescheduling method for dynamic security. IEEE Trans. Power Syst. 13(3), 810–815 (1998)

    Article  Google Scholar 

  58. Diao, R., Vittal, V., Logic, N.: Design of a real-time security assessment tool for situational awareness enhancement in modern power. IEEE Trans. Power Syst. 25(2), 957–965 (2010)

    Article  Google Scholar 

  59. Wang, S., Lu, S., Lin, G., Zhou, N.: Measurement-based coherency identification and aggregation for power systems. In: IEEE Power and Energy Society General Meeting, pp. 1–7, July 2012

    Google Scholar 

  60. Nath, R., Lamba, S., Rao, K.S.P.: Coherency based system decomposition into study and external areas using weak coupling. IEEE Trans. Power Appar. Syst. PAS-104(6), 1443–1449 (1985)

    Article  Google Scholar 

  61. Yusof, S.B., Rogers, G., Alden, R.T.H.: Slow coherency based network partitioning including load. IEEE Trans. Power Syst. 8(3), 1375–1382 (1993)

    Article  Google Scholar 

  62. Tang, K., Venayagamoorthy, G.K.: Online coherency analysis of synchronous generators in a power system. In: 2014 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5, Feb 2014

    Google Scholar 

  63. Stadler, J., Renner, H., Kock, K.: An inter-area oscillation based approach for coherency identification in power systems. In: Power Systems Computation Conference (PSCC), Wroclaw, pp. 1–6 (2014)

    Google Scholar 

  64. Padhy, B.P., Srivastava, S.C., Verma, N.K.: A coherency-based approach for signal selection for wide area stabilizing control in power systems. IEEE Syst. J. 7(4), 807–816 (2013)

    Article  Google Scholar 

  65. Susuki, Y., Mezic, I.: Nonlinear Koopman modes and power system stability assessment without models. IEEE Trans. Power Syst. 29(2), 899–907 (2014)

    Article  Google Scholar 

  66. Tu, J.H., Rowley, C.W., Aram, E., Mittal, R.: Koopman spectral analysis of separated flow over a finite-thickness flat plate with elliptical leading edge. In: AIAA Paper 2011, vol. 2864 (2011)

    Google Scholar 

  67. Rowley, C.W., Mezic, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115 (2009)

    Article  MathSciNet  Google Scholar 

  68. Budiic, M., Mohr, R., Mezic, I.: Applied Koopmanism. Chaos Interdiscip. J. Nonlinear Sci. 22(4), 047 510 (2012)

    Google Scholar 

  69. Force, C.T.: Long term dynamics phase II final report. CIGRE (1995)

    Google Scholar 

  70. Chamorro, H.R., Ghandhari, M., Eriksson, R.: Coherent groups identification under high penetration of non-synchronous generation. In: IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016)

    Google Scholar 

Download references

Acknowledgements

Authors are very grateful to the Dr. Fredrik Raak and Prof. Susuki from Kyoto University for the discussion about the Koopman Mode theory, its computation and suggestions of the document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold R. Chamorro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chamorro, H.R., Ordonez, C.A., Peng, J.CH., Gonzalez-Longatt, F., Sood, V.K. (2019). Coherency Estimation in Power Systems: A Koopman Operator Approach. In: Blondin, M., Pardalos, P., Sanchis Sáez, J. (eds) Computational Intelligence and Optimization Methods for Control Engineering. Springer Optimization and Its Applications, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-25446-9_9

Download citation

Publish with us

Policies and ethics