Skip to main content

Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles

  • Chapter
  • First Online:
Computational Intelligence and Optimization Methods for Control Engineering

Abstract

This article considers the problem of traffic control in which an autonomous vehicle is used to regulate human-piloted traffic to dissipate stop-and-go traffic waves. We first investigated the controllability of well-known microscopic traffic flow models, namely, (i) the Bando model (also known as the optimal velocity model), (ii) the follow-the-leader model, and (iii) a combined optimal velocity follow-the-leader model. Based on the controllability results, we proposed three control strategies for an autonomous vehicle to stabilize the other, human-piloted traffics. We subsequently simulate the control effects on the microscopic models of human drivers in numerical experiments to quantify the potential benefits of the controllers. Based on the simulations, finally, we conduct a field experiment with 22 human drivers and a fully autonomous-capable vehicle, to assess the feasibility of autonomous vehicle-based traffic control on real human-piloted traffic. We show that both in simulation and in the field test that an autonomous vehicle is able to dampen waves generated by 22 cars, and that as a consequence, the total fuel consumption of all vehicles is reduced by up to 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Established for \(n\leqslant 9\) vehicles and conjectured for \(n>9\).

References

  1. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 35–1042 (1995)

    Article  Google Scholar 

  2. Bellomo, N., Dogbe, C.: On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53(3), 409–463 (2011)

    Article  MathSciNet  Google Scholar 

  3. Besselink, B., Johansson, K.H.: String stability and a delay-based spacing policy for vehicle platoons subject to disturbances. IEEE Trans. Automat. Control (2017)

    Google Scholar 

  4. Bressan, A., Piccoli, B.: Introduction to the mathematical theory of control. In: AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), vol. 1. Springfield, MO (2007)

    Google Scholar 

  5. Buehler, M., Iagnemma, K., Singh, S.: The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, vol. 56. Springer (2009)

    Google Scholar 

  6. Chalons, C., Delle Monache, M.L., Goatin, P.: A conservative scheme for non-classical solutions to a strongly coupled pde-ode problem. Interfaces Free Boundaries 19(4), 553–571 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chong, L., Abbas, M., Medina, A.: Simulation of driver behavior with agent-based back-propagation neural network. Transp. Res. Record J. Transp. Res. Board 2249, 44–51 (2011)

    Article  Google Scholar 

  8. Coron, J.-M.: Control and Nonlinearity. Number 136. American Mathematical Society (2007)

    Google Scholar 

  9. Darbha, S., Rajagopal, K.: Intelligent cruise control systems and traffic flow stability. Transp. Res. Part C Emerg. Technol. 7(6), 329–352 (1999)

    Article  Google Scholar 

  10. Davis, L.: Effect of adaptive cruise control systems on traffic flow. Phys. Rev. E 69(6), 066110 (2004)

    Article  MathSciNet  Google Scholar 

  11. Delle Monache, M.L., Goatin, P.: Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result. J. Different. Equations 257(11), 4015–4029 (2014)

    Article  MathSciNet  Google Scholar 

  12. Fenton, R.E., Mayhan, R.J.: Automated highway studies at the Ohio State University-an overview. IEEE Trans. Vehicular Technol. 40(1), 100–113 (1991)

    Article  Google Scholar 

  13. Garavello, M., Han, K., Piccoli, B.: Models for Vehicular Traffic on Networks. American Institute of Mathematical Sciences (2016)

    Google Scholar 

  14. Ge, G.I., Avedisov, S.S., He, C.R., Qin, W.B., Sadeghpour, M., Orosz, G.: Experimental validation of connected automated vehicle design among human-driven vehicles. Transp. Res. Part C Emerg. Technol. 91, 335–352 (2018)

    Article  Google Scholar 

  15. Gomes, G., Horowitz, R.: Optimal freeway ramp metering using the asymmetric cell transmission model. Transp. Res. Part C Emerg. Technol. 14(4), 244–262 (2006)

    Article  Google Scholar 

  16. Guériau, M., Billot, R., El Faouzi, N.-E., Monteil, J., Armetta, F., Hassas, S.: How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies. Transp. Res. Part C Emerg. Technol. 67, 266–279 (2016)

    Article  Google Scholar 

  17. Han, Y., Hegyi, A., Yuan, Y., Hoogendoorn, S., Papageorgiou, M., Roncoli, C.: Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits. Transp. Res. Part C Emerg. Technol. 77, 405–420 (2017)

    Article  Google Scholar 

  18. Hegyi, A., De Schutter, B., Hellendoorn, H.: Model predictive control for optimal coordination of ramp metering and variable speed limits. Transp. Res. Part C Emerg. Technol. 13(3), 185–209 (2005)

    Article  Google Scholar 

  19. Hegyi, A., De Schutter, B., Hellendoorn, J.: Optimal coordination of variable speed limits to suppress shock waves. IEEE Trans. Intell. Transp. Syst. 6(1), 102–112 (2005)

    Article  Google Scholar 

  20. Hegyi, A., Hoogendoorn, S.P., Schreuder, M., Stoelhorst, H., Viti, F.: SPECIALIST: a dynamic speed limit control algorithm based on shock wave theory. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems, pp. 827–832. IEEE (2008)

    Google Scholar 

  21. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Modern Phys. 73, 1067–1141 (2001)

    Article  MathSciNet  Google Scholar 

  22. Hongfei, J., Zhicai, J., Anning, N.: Develop a car-following model using data collected by “five-wheel system”. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems, vol. 1, pp. 346–351. IEEE (2003)

    Google Scholar 

  23. Ioannou, P., Xu, Z., Eckert, S., Clemons, D., Sieja, T.: Intelligent cruise control: theory and experiment. In: Proceedings of the 32nd IEEE Conference on Decision and Control, pp. 1885–1890. IEEE (1993)

    Google Scholar 

  24. Jurdjevic, V., Quinn, J.P.: Controllability and stability. J. Different. Equations 28(3), 381–389 (1978)

    Article  MathSciNet  Google Scholar 

  25. Khodayari, A., Ghaffari, A., Kazemi, R., Braunstingl, R.: A modified car-following model based on a neural network model of the human driver effects. IEEE Trans. Syst. Man Cybernet. Part A Syst. Humans 42(6), 1440–1449 (2012)

    Article  Google Scholar 

  26. Knorr, F., Baselt, D., Schreckenberg, M., Mauve, M.: Reducing traffic jams via VANETs. IEEE Trans. Vehicular Technol. 61(8), 3490–3498 (2012)

    Article  Google Scholar 

  27. Konishi, K., Kokame, H., Hirata, K.: Decentralized delayed-feedback control of an optimal velocity traffic model. Eur. Phys. J. B Condensed Matter Complex Syst. 15(4), 715–722 (2000)

    Article  Google Scholar 

  28. Lattanzio, C., Maurizi, A., Piccoli, B.: Moving bottlenecks in car traffic flow: a PDE-ODE coupled model. SIAM J. Math. Anal. 43, 50–67 (2011)

    Article  MathSciNet  Google Scholar 

  29. Levine, W., Athans, M.: On the optimal error regulation of a string of moving vehicles. IEEE Trans. Automat. Control 11(3), 355–361 (1966)

    Article  Google Scholar 

  30. Lu, X.Y., Qiu, T.Z., Varaiya, P., Horowitz, R., Shladover, S.E.: Combining variable speed limits with ramp metering for freeway traffic control. In: Proceedings of the American Control Conference, pp. 2266–2271 (2010)

    Google Scholar 

  31. Lu, X.-Y., Shladover, S.E., Jawad, I., Jagannathan, R., Phillips, T.: Novel algorithm for variable speed limits and advisories for a freeway corridor with multiple bottlenecks. Transp. Res. Record J. Transp. Res. Board 2489, 86–96 (2015)

    Article  Google Scholar 

  32. Ma, J., Li, X., Shladover, S.E., Rakha, H.A., Lu, X.-Y., Jagannathan, R., Dailey, D.J.: Freeway speed harmonization. IEEE Trans. Intell. Vehicles 1(1), 78–89 (2016)

    Article  Google Scholar 

  33. Milanés, V., Shladover, S.E., Spring, J., Nowakowski, C., Kawazoe, H., Nakamura, M.: Cooperative adaptive cruise control in real traffic situations. IEEE Trans. Intell. Transp. Syst. 15(1), 296–305 (2014)

    Article  Google Scholar 

  34. Nakayama, A., Sugiyama, Y., Hasebe, K.: Effect of looking at the car that follows in an optimal velocity model of traffic flow. Phys. Rev. E 65(1), 016112 (2001)

    Article  Google Scholar 

  35. Nissan, A., Koutsopoulos, H.N.: Evaluation of the impact of advisory variable speed limits on motorway capacity and level of service. Procedia Soc. Behavior. Sci. 16, 100–109 (2011)

    Article  Google Scholar 

  36. Orosz, G., Wilson, R.E., Stépán, G.: Traffic Jams: Dynamics and Control (2010)

    Google Scholar 

  37. Papageorgiou, M., Hadj-Salem, H., Blosseville, J.-M.: ALINEA: a local feedback control law for on-ramp metering. Transp. Res. Record J. Transp. Res. Board 1320, 58–67 (1991)

    Google Scholar 

  38. Papageorgiou, M., Kotsialos, A.: Freeway ramp metering: an overview. IEEE Trans. Intell. Transp. Syst. 3(4), 271–281 (2002)

    Article  Google Scholar 

  39. Papamichail, I., Kampitaki, K., Papageorgiou, M., Messmer, A.: Integrated ramp metering and variable speed limit control of motorway traffic flow. IFAC Proceedings Volumes 41(2), 14084–14089 (2008)

    Article  Google Scholar 

  40. Piacentini, G., Goatin, P., Ferrara, A.: Traffic control via moving bottleneck of coordinated vehicles. In: 15th IFAC Symposium on Control in Transportation Systems (2018)

    Article  Google Scholar 

  41. Piccoli, B., Tosin, A.: Vehicular Traffic: A Review of Continuum Mathematical Models, pp. 1748–1770. Springer, New York (2011)

    Chapter  Google Scholar 

  42. Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24(3), 274–281 (1953)

    Article  MathSciNet  Google Scholar 

  43. Popov, A., Hegyi, A., Babuška, R., Werner, H.: Distributed controller design approach to dynamic speed limit control against shockwaves on freeways. Transp. Res. Record J. Transp. Res. Board 2086, 93–99 (2008)

    Article  Google Scholar 

  44. Rajamani, R., Choi, S.B., Hedrick, J.K., Law, B., Hedrick, B., Prohaska, R., Kretz, P.: Design and experimental implementation of control for a platoon of automated vehicles. AMSE J. Dynam. Syst. Meas. Control 122(3), 470–476 (1998)

    Google Scholar 

  45. Rakha, H., Ahn, K., Trani, A.: Comparison of mobile5a, mobile6, vt-micro, and cmem models for estimating hot-stabilized light-duty gasoline vehicle emissions. Canadian J. Civil Eng. 30(6), 1010–1021 (2003)

    Article  Google Scholar 

  46. Rakha, H., Ahn, K., Trani, A.: Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions. Transp. Res. Part D Transp. Environ. 9(1), 49–74 (2004)

    Article  Google Scholar 

  47. Reuschel, A.: Vehicle movements in a platoon. Oesterreichisches Ingenieur-Archir 4, 193–215 (1950)

    MATH  Google Scholar 

  48. Reuschel, A.: Vehicle movements in a platoon with uniform acceleration or deceleration of the lead vehicle. Zeitschrift des Oesterreichischen Ingenieur-und Architekten-Vereines 95, 50–62 (1950)

    Google Scholar 

  49. SAE. Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems. Technical Report (2014)

    Google Scholar 

  50. Shladover, S.E.: Review of the state of development of advanced vehicle control systems (AVCS). Vehicle Syst. Dynam. 24(6–7), 551–595 (1995)

    Article  Google Scholar 

  51. Smulders, S.: Control of freeway traffic flow by variable speed signs. Transp. Res. Part B Methodologic. 24(2), 111–132 (1990)

    Article  Google Scholar 

  52. Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S., Yukawa, S.: Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 033001 (2008)

    Article  Google Scholar 

  53. Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S.-I., Yukawa, S.: Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 033001 (2008)

    Article  Google Scholar 

  54. Swaroop, D., Hedrick, J.: String stability of interconnected systems. IEEE Trans. Automat. Control 41(3), 349–357 (1996)

    Article  MathSciNet  Google Scholar 

  55. Tadaki, S., Kikuchi, M., Fukui, M., Nakayama, A., Nishinari, K., Shibata, A., Sugiyama, Y., Yosida, T., Yukawa, S.: Phase transition in traffic jam experiment on a circuit. New J. Phys. 15, 103034 (2013)

    Article  Google Scholar 

  56. Tadaki, S.-I., Kikuchi, M., Fukui, M., Nakayama, A., Nishinari, K., Shibata, A., Sugiyama, Y., Yosida, T., Yukawa, S.: Phase transition in traffic jam experiment on a circuit. New J. Phys. 15(10), 103034 (2013)

    Article  Google Scholar 

  57. Talebpour, A., Mahmassani, H.S.: Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C Emerg. Technol. 71, 143–163 (2016)

    Article  Google Scholar 

  58. Wang, M., Daamen, W., Hoogendoorn, S.P., van Arem, B.: Cooperative car-following control: distributed algorithm and impact on moving jam features. IEEE Trans. Intell. Transp. Syst. 17(5), 1459–1471 (2016)

    Article  Google Scholar 

  59. Wu, F., Stern, R., Cui, S., Monache, M.L.D., Bhadanid, R., Bunting, M., Churchill, M., Hamilton, N., Haulcy, R., Piccoli, B., Seibold, B.: Tracking vehicle trajectories and fuel rates in oscillatory traffic. Transp. Res. Part C Emerg. Technol. Under Review (2017)

    Google Scholar 

  60. Zhou, M., Qu, X., Li, X.: A recurrent neural network based microscopic car following model to predict traffic oscillation. Transp. Res. Part C Emerg. Technol. 84, 245–264 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Inria associated team "ModEling autonoMous vEhicles iN Traffic flOw " (MEMENTO). This material is based upon work supported by the National Science Foundation under Grant No. CNS-1446715 (Piccoli), CNS-1446690 (Seibold), CNS-1446435 (Sprinkle), and CNS-1446702 (Work). The authors thank Hannah Pohlmann for her help in designing and tuning of the Follow-the-Leader-Bando microscopic model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetto Piccoli .

Editor information

Editors and Affiliations

Appendix

Appendix

The linearization of system  (12.8) at the equilibrium point \((Y^*,0)\in \mathrm{I}\!\mathrm{R}^{2n}\) is described by

$$\begin{aligned} \dot{Y} =A Y + Bu, \end{aligned}$$
(12.20)

where

(12.21)

For \(n\in \mathrm {I\!N}\) define the matrices \((D_{n-1}, F_{n-1}) \in \mathscr {M}_{2n-1}(\mathrm{I}\!\mathrm{R})^2\) by:

(12.22)

with \(\gamma =bV'(y^*+d)\) and \(\alpha =\frac{a}{(y^*+d)^2}\). Moreover, denote by \(0_{n-1}\in \mathscr {M}_{n-1}(\mathrm{I}\!\mathrm{R})\) and \(I_{n-1} \in \mathscr {M}_{n-1}(\mathrm{I}\!\mathrm{R})\) the zero matrix and the identity matrix respectively. Let \(k\geqslant 1\). From (12.21), there exist \((A_{i,k})_{i\in \{1,\ldots ,4\}}\in \mathscr {M}_{n-1}(\mathrm{I}\!\mathrm{R})\) and \( (C_{i,k})_{i\in \{1,2\}}\in \mathscr {M}_{n-1,1}(\mathrm{I}\!\mathrm{R})\) such that,

$$ A^k=\begin{bmatrix} A_{1,k} &{} A_{2,k} &{} C_{1,k} \\ A_{3,k} &{} A_{4,k} &{} C_{2,k}\\ 0_{1,n-1} &{} 0_{1,n-1}&{} 0 \\ \end{bmatrix}, $$

and for every \(k\geqslant 1\) we have

$$\begin{aligned} \left\{ \begin{array}{l} A_{4,k+1}=D_{n-1}A_{2,k}+F_{n-1}A_{4,k},\\ A_{2,k+1}=A_{4,k},\\ C_{2,k+1}=D_{n-1}C_{1,k}+F_{n-1}C_{2,k},\\ C_{1,k+1}=C_{2,k}.\\ \end{array}\right. \end{aligned}$$
(12.23)

In particular, for every \(k\geqslant 2\),

$$\begin{aligned} \left\{ \begin{array}{l} A_{4,k+1}=D_{n-1}A_{4,k-1}+F_{n-1}A_{4,k},\\ A_{2,k+1}=D_{n-1}A_{2,k-1}+F_{n-1}A_{2,k}, \\ C_{2,k+1}=D_{n-1}C_{2,k-1}+F_{n-1}C_{2,k},\\ C_{2,k}=D_{n-1}C_{1,k-1}+F_{n-1}C_{1,k}. \end{array}\right. \end{aligned}$$
(12.24)

Combining (12.23) with (12.24) and using that, for every \(k\geqslant 1\), \(A^kB(2n-1)=0\), we conclude that, for every \(k\geqslant 2\),

$$\begin{aligned} A^{k+1} B= \mathscr {D} A^{k-1}B+\mathscr {F}A^k B, \end{aligned}$$
(12.25)

with

$$\begin{aligned} \mathscr {D}=\begin{bmatrix} D_{n-1} &{} 0_{n-1} &{} 0 \\ 0_{n-1} &{} D_{n-1} &{} 0\\ 0_{1,n-1} &{} 0_{1,n-1}&{} 0 \\ \end{bmatrix} \quad \text {and} \quad \mathscr {F}=\begin{bmatrix} F_{n-1} &{} 0_{n-1} &{} 0 \\ 0_{n-1} &{} F_{n-1} &{} 0\\ 0_{1,n-1} &{} 0_{1,n-1}&{} 0 \\ \end{bmatrix}. \end{aligned}$$
(12.26)

Moreover, we have

$$\begin{aligned} A^2B=X+ \mathscr {F}_{2n-1} AB \quad \text {with} \quad AB=\left( \begin{array}{l} 0_{n-2,1}\\ 1\\ 0_{n-3,1}\\ \alpha \\ -\alpha \\ 0 \end{array}\right) \, \, \text {and} \, \, X=\left( \begin{array}{l} 0_{n-2,1}\\ b\\ 0_{n-3,1}\\ \gamma \\ -\gamma \\ 0 \end{array}\right) . \end{aligned}$$
(12.27)

Proof of Theorem 12.3 If \(b=0\) then \(\gamma =0\). From (12.25) and (12.27), for every \(k\geqslant 2\),

$$ \left\{ \begin{array}{l} A^{k+1}=\mathscr {F} A^kB, \\ A^2B=\mathscr {F} AB.\\ \end{array}\right. $$

Thus, the Kalman controllability matrix (12.6) satisfies

$$ \text {rank}\left( K(A,B)\right) =\text {rank}\left( B,AB,\mathscr {F}AB,\ldots ,\mathscr {F}^{2n-4}AB\right) . $$

By Cayley–Hamilton Theorem, there exists \((\alpha _0,\ldots , \alpha _{n-2}) \in \mathrm{I}\!\mathrm{R}^{n-1}\) such that \(F^{n-1}_{n-1}=\sum _{i=0}^{n-2} \alpha _i F_{n-1}^i\). From (12.26), we conclude that

$$ \text {rank}\left( K(A,B)\right) =\text {rank}\left( B,AB,\mathscr {F}AB,\ldots ,\mathscr {F}^{n-2}AB\right) . $$

Using the expression of AB given in (12.27) and the equality \(\mathscr {F}^k=\begin{bmatrix} F^k_{n-1} &{} 0_{n-1} &{} 0 \\ 0_{n-1} &{} F^k_{n-1} &{} 0\\ 0_{1,n-1} &{} 0_{1,n-1}&{} 0 \\ \end{bmatrix}\), by straightforward computations, we have

$$ \text {rank}\left( B,AB,\mathscr {F}AB,\ldots ,\mathscr {F}^{n-2}AB\right) =n, $$

whence the conclusion.

Proof of Theorem 12.4 Let’s prove by induction that, for every \(k\geqslant 1\), there exist \(\left( \lambda _i\right) _{i=1,\ldots ,2k}\) and \(\left( \mu _i\right) _{i=1,\ldots ,2k+1}\) such that

$$\begin{aligned} \left\{ \begin{array}{l} A^{2k+1}B=\sum _{i=1}^{2k} \lambda _i A^i B+ \mathscr {D}^k(AB) \\ A^{2k+2}B=\sum _{i=1}^{2k+1} \mu _i A^i B+ \mathscr {D}^k(A^2B) \end{array}\right. . \qquad \qquad \qquad {(P_k)} \end{aligned}$$

Since \(a=0\), we have \(F_{n-1}=-b I_{n-1}\). Using (12.25), \(A^3B=\mathscr {D}AB-bA^2B\) and \(A^4B=\mathscr {D}A^2B-bA^3B\). Thus, (\(P_k\)) holds for \(k=1\). Assuming that \((P_k)\) holds for \(k=p\). From (12.25), we have

$$\begin{aligned} \left\{ \begin{array}{l} A^{2p+3}=\mathscr {D}A^{2p+1}-bA^{2p+2}B \\ A^{2p+4}=\mathscr {D}A^{2p+2}-bA^{2p+3}B \\ \end{array}\right. \quad \text {and} \quad \mathscr {D}A^{i}B=A^{i+2}B+bA^{i+1}B, \, i\geqslant 1. \end{aligned}$$
(12.28)

Using (12.28) and \((P_k)\) for \(k=p\), we conclude that \((P_k)\) holds for \(k=p+1\).

The equality \((P_k)\) for \(k=n-2\) gives

$$ \begin{array}{ll} \text {rank}(K(A,B))&{}=\left( B,AB,\ldots , A^{2n-3}, \mathscr {D}^{n-2} A^2B \right) \\ &{}=\left( B,AB,\ldots , A^{2n-4},\mathscr {D}^{n-2} AB, \mathscr {D}^{n-2} A^2B \right) \\ &{}=\left( B,AB,A^2B,\mathscr {D}AB,\mathscr {D}A^2B,\ldots ,\mathscr {D}^{n-2} AB, \mathscr {D}^{n-2} A^2B \right) . \end{array} $$

Since AB and \(A^2B\) are linearly independent and \(\mathscr {D}^k=\begin{bmatrix} D^k_{n-1} &{} 0_{n-1} &{} 0 \\ 0_{n-1} &{} D^k_{n-1} &{} 0\\ 0_{1,n-1} &{} 0_{1,n-1}&{} 0 \\ \end{bmatrix}\), by straightforward computations, we have

$$ \text {rank}\left( B,AB,A^2B,\mathscr {D}AB,\mathscr {D}A^2B,\ldots ,\mathscr {D}^{n-2} AB, \mathscr {D}^{n-2} A^2B \right) =2n-1. $$

Thus, the linearization of system  (12.8) at the equilibrium point \((Y^*,0)\) is controllable. Using [8, Theorem 3.8], Theorem 12.4 is proved.

Proof of Theorem 12.5 Using the symbolic mathematics software Maple [https://www.maplesoft.com/products/Maple/], we establish that for every \(3\leqslant n\leqslant 9\),

$$ \text {Det}(K(A,B))=\gamma ^{\frac{n^2-3n+2}{2}}b^{\frac{n^2-n}{2}}\left( \alpha -\frac{\gamma }{b}\right) ^{\frac{n^2-n}{2}}. $$

Thus, for every \(\alpha \ne \frac{\gamma }{b}\), \(\gamma \ne 0\), \(b \ne 0\), the linearization of system  (12.8) at the equilibrium point \((Y^*,0)\) is controllable, whence the conclusion of Theorem 12.5 by using [8, Theorem 3.8].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delle Monache, M.L. et al. (2019). Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles. In: Blondin, M., Pardalos, P., Sanchis Sáez, J. (eds) Computational Intelligence and Optimization Methods for Control Engineering. Springer Optimization and Its Applications, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-25446-9_12

Download citation

Publish with us

Policies and ethics