Skip to main content

Packaging Technologies for Electronic Devices

  • Chapter
  • First Online:

Abstract

Modern production is characterized by trends of miniaturization and increasing the density of functional elements, the so-called splicing of traditional electronics and microelectronics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Belous, A., Saladukha, V., & Shvedau, S. (2017) Space microelectronics Volume 2: Integrated circuit design for space applications (p. 720). London: Artech House. ISBN: 9781630812591.

    Google Scholar 

  2. Belous, A. I., Emelyanov, V. A., & Turtsevich, A. S. (2013). Fundamentals of IC microassembly technology (p. 316). Minsk: CMD Press (in Russian).

    Google Scholar 

  3. Ingram, B. (2008). WaferCap-packaged amplifiers drive innovation into RF designs. Microwave Journal, 51, 114, 116, 118.

    Google Scholar 

  4. RF newsletter, millimeter wave special, November 2008. www.bfioptilas.com/wafercap

  5. Eloy, J. (2010). Look for MEMS sector to double revenues, triple units shipped bу 2015. MEMS Trends, 3.

    Google Scholar 

  6. Brizoux, М., Grivon, А., Maia Filho, W. С., Monier-Vinard, Е., Stahr, J., & Morianz, М. (2010). Industrial РСВ development using embedded passive and active discrete chips focused on process and DfR.

    Google Scholar 

  7. Vikulov, I. (2009). Packaging of microwave ICs on wafer: Technology, advantages, results. Electronics: NTV, 3, 74–79 (in Russian). http://www.electronics.ru/files/article_pdf/0/article_203_853.pdf

  8. Chang-Chien, P., et al. (2007, May 14–17). MMIC packaging and heterogeneous integration using wafer-scale assembly. In CS MANTECH conference (pp. 143–146), Austin, TX.

    Google Scholar 

  9. Bonnet, B., et al. (2008, October). 3D packaging technology for integrated antenna front-ends. In Proceedings of the 38th European microwave conference (pp. 1569–1572), Amsterdam, The Netherlands.

    Google Scholar 

  10. Raikunov, G. G. (Ed.) (2013). Ionizing radiation of outer space and its effect on the onboard equipment of spacecraft (p. 256). Minsk: Fizmatlit (in Russian).

    Google Scholar 

  11. Vasilenkov, N., Maksimov, A., Grabchikov, S., & Lastovsky, S. (2015). Specialized radiation protection packages for microelectronics products. Electronics: NTB, 4, 50–56 (in Russian).

    Google Scholar 

  12. Belous, A. I., Merdanov, M. K., & Shvedov S. V. (2016). Microwave electronics in radar systems and communications: Technical encyclopedia: 2 books (p.1415). Minsk: Technosphere (in Russian).

    Google Scholar 

  13. Bogatyrev, Yu., Vasilenkov, N., Grabchikov, S., et al. (2014). Screens for local radiation protection of microelectronic products. Problems of Atomic Science and Technology, 4, 53–56 (Physics of radiation effect on radio-electronic equipment) (in Russian).

    Google Scholar 

  14. Gulbin, V. (2010). Development of composite materials modified by nanopowders for radiation protection in atomic energy. In IX All-Russian conference physical and chemical ultradispersed nanosystems, Izhevsk (in Russian).

    Google Scholar 

  15. Millward, D., & Strobel, D. (1990, May). The effectiveness of RAD-PAK™ ICs for space radiation hardering. In Proceedings of 40-th ECTEC conference, Las Vegas.

    Google Scholar 

  16. Fan, W., Drumm, C., & Boeske, S. (1996). Shielding considerations for satellite microelectronics. IEEE Transactions on Nuclear Science, 43(6), 2790–2796.

    Google Scholar 

  17. Mangeret, R., Carriere, Т., & Beacour, J. (1996). Effects of material and/or structure on shielding of electronic devices. IEEE Transactions on Nuclear Science 43(6), 2665–2670.

    Google Scholar 

  18. Lau, J. Н. (1991). Solder joint reliability theory and applications. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  19. Subramanian, K. N. (2012). Lead-free solders: Materials reliability for electronics edited. Chichester: Wiley.

    Google Scholar 

  20. Nisan, A. (2011). Eight trends that will change electronics. Technologies in the Electronic Industry, 2 (in Russian).

    Google Scholar 

  21. International technology roadmap for semiconductors. Assembly and Packaging. 2016.

    Google Scholar 

  22. Tu, K. N. (2007). Solder joint technology: Materials, properties and reliability. New York, NY: Springer.

    Google Scholar 

  23. GOST °P°56427-2015. Soldering of electronic modules of radio-electronic equipment. Automated mixed and surface mounting using lead-free and traditional technologies. Technical requirements for the implementation of technological operations (in Russian).

    Google Scholar 

  24. Liang, Y. Н., Мао, Н., Yan, Y. G., & Lee J. K. Study on solder joint reliability of fine pitch CSP. In IPC APEX EXPO conference proceedings.

    Google Scholar 

  25. Soret, C. (1879). Archives des Sciences Physiques et Naturelles. Geneve 3.

    Google Scholar 

  26. Huang, A. T., Gusak, A. M., Tu, K. N., & Lai, Y. S. (2006). Thermomigration in SnPb composite flip chip solder joints. Applied Physics Letters, 88, 141911–141913.

    Google Scholar 

  27. Chen, C., Hsiao, H.-Y., Chang, Y.-W., Ouyang, F., & Tu, K. N. (2012). Thermomigration in solder joints. Materials Science and Engineering: R: Reports, 73(9–10), 85–100.

    Google Scholar 

  28. Dandu, P., Fan, X. J., Liu, Y., & Diao, C. (2010). Finite element modeling on electromigration of solder joints in wafer level packages. Microelectronics Reliability, 50(4), 547–555.

    Google Scholar 

  29. Leidecker, H. (2006). NASA Goddard Jay Brusse. QSS Group, Inc.

    Google Scholar 

  30. Tikhomirov, K. (2016). Actual problems of reliability of solder joints of surface mounting. Technologies in the Electronic Industry, 8, 43–47 (in Russian).

    Google Scholar 

  31. Andrae, A. S. G. (2010). Global life cycle impact assessments of material shifts. London: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belous, A., Saladukha, V. (2020). Packaging Technologies for Electronic Devices. In: High-Speed Digital System Design. Springer, Cham. https://doi.org/10.1007/978-3-030-25409-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25409-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25408-7

  • Online ISBN: 978-3-030-25409-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics