Skip to main content

Wireless Telecommunication Systems

  • Chapter
  • First Online:
High-Speed Digital System Design

Abstract

In the general case, as shown in Chap. 1, all up-to-date telecommunication systems consist of only two components: a high-speed data processing device and data transmission channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belous, A., Saladukha, V., & Shvedau, S. (2017). Space microelectronics. Artech House, Inc.

    Google Scholar 

  2. Belous, A., Emelyanov, V., & Turtsevich, A. (2012). Fundamentals of microelectronic device circuitry (p. 472). Moscow: Technosphere.

    Google Scholar 

  3. Belous, A., Shvedau, S., & Merdanov, M. (2016). Microwave electronics in radar systems and communications. In Technical encyclopedia (2 Vols., p. 1416). Moscow: Technosphere.

    Google Scholar 

  4. Belous, A., Efimenko, S., & Turtsevich, A. (2013). Semiconductor power electronics (p. 216 + colour attachment on 12 pages). Moscow: Tekhnosfera.

    Google Scholar 

  5. Belous, A., & Yarzhembitsky, V. (2001). Circuitry of digital microcircuits for information processing and transmission systems (p. 116). Minsk: Tekhnoprint UE.

    Google Scholar 

  6. Belous, A., Emelyanov, V., & Syakersky, V. (2009). Designing integrated circuits with low power consumption (p. 320). Minsk: Integralpoligraf.

    Google Scholar 

  7. Belous, A., Blinkov, O., & Silin, A. (1990). Bipolar IC for automatic control system interface (p. 272). Leningrad: Mashinostroenie.

    Google Scholar 

  8. Belous, A., Podubny, O., & Zhurba, V. (1992). K1815 LSI Microprocessor Kit for digital signal processing (p. 256). Moscow: Radio and Communications.

    Google Scholar 

  9. Belous, A., Saladukha, V., & Shvedau, S. (2015). Space electronics (Vol. 1, p. 696). Moscow: Tekhnosfera.

    Google Scholar 

  10. Belous, A., Saladukha, V., & Shvedau, S. (2015). Space electronics (Vol. 2, p. 488). Moscow: Tekhnosfera.

    Google Scholar 

  11. 2G, 3G, 4G, and everything in between: An Engadget wireless primer. https://habrahabr.ru/post/112535/

  12. Ericsson. (2013). Networked society essentials [pdf]. Stockholm: Ericsson. Website: http://www.ericsson.com/res/docs/2013/networked-society-essentials-booklet.pdf

  13. Ericsson. (2013). Ericsson mobility report – On the pulse of the networked society [pdf]. Stockholm: Ericsson. Website: http://www.ericsson.com/res/docs/2013/ericsson-mobilityreport-june-2013.pdf

  14. Cisco. (2013). Cisco visual networking index: Global mobile data traffic forecast update, 2012–2017 [pdf]. USA: Cisco. Website: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf

  15. Ericsson. (2013). Technology for good – Ericsson sustainability and corporate responsibility report 2012 [pdf]. Website: http://www.ericsson.com/res/thecompany/docs/corporate-responsibility/2012/2012_corporate_responsibility_and_sustainability_report.pdf

  16. METIS. (2013). Mobile and wireless communications Enablers for the Twenty-twenty information Society [pdf]. Website: https://www.metis2020.com/wp-content/uploads/2012/10/METiS_factSheet_2013.pdf

  17. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 101–107.

    Google Scholar 

  18. Pi, Z., Khan, F., & Zhang, J. (2010). Techniques for millimeter wave mobile communication. US Patent Application Publication No. 61/299304, priority October 29 2010.

    Google Scholar 

  19. Vishnevsky, V., Frolov, S., & Shakhnovich, I. (2010). The millimeter range as an industrial reality. 802.15.3c standard and WirelessHD specification. Electronics: NTB, 3, 70–79.

    Google Scholar 

  20. Vishnevsky, V., Frolov, S., & Shakhnovich, I. (2011). Radio-relay communication lines in the millimeter-wave range: New speed horizons. Electronics: NTB, 1, 90–97.

    Google Scholar 

  21. Recommendation ITU-R M. 1645. (2010). Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000. ITU.

    Google Scholar 

  22. Cisco visual networking index: Forecast and methodology, 2014–2019. www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11–481360.html

  23. Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: A 5G perspective. IEEE Communications Magazine, 2, 66–72.

    Google Scholar 

  24. Wang, T., Li, G., Ding, J., Miao, Q., Li, J., & Wang, Y. (2015). 5G spectrum: Is China ready? IEEE Communications Magazine, 7, 58–65.

    Google Scholar 

  25. ICT-317669-METIS/D1.1. (2013). Scenarios, requirements and KPIs for 5G mobile and wireless system. Project METIS.

    Google Scholar 

  26. Shakhnovich, I. (2014). Myth about free space attenuation: What G.T. Friis did not write. First Mile, 2, 40–45.

    Google Scholar 

  27. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Xplore Digital Library, 1, 335–349.

    Article  Google Scholar 

  28. Rappaport, T. S. et al. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1830–1839.

    Article  Google Scholar 

  29. Rappaport, T. S. et al. (2014). 73 GHz millimeter-wave indoor and foliage propagation channel measurements and results (Technical Report 2014–003). NYU WIRELESS: Department of Electrical and Computer Engineering, NYU Polytechnic School of Engineering .

    Google Scholar 

  30. Ghosh, A. (2013). Can Mmwave Wireless Technology meet the future capacity crunch. In IEEE ICC.

    Google Scholar 

  31. Roh, W. (2013). Performances and feasibility of mmWave beamforming prototype for 5G cellular communications. In IEEE ICC.

    Google Scholar 

  32. Tikhvinsky, V., & Bochechka, G. (2014). The prospects of the millimeter range for 5G in Russia. The First Mile, 2, 36–39.

    Google Scholar 

  33. Cudak, M., Kovarik, T., Thomas, T. A., Ghosh, A., Kishiyama, Y., & Nakamura, T. (2014). Experimental mmWave 5G cellular system. In Globecom 2014 Workshop Mobile Communications in Higher Frequency Bands (pp. 377–381).

    Google Scholar 

  34. 4G Americas. (2015, August). 5G spectrum recommendations. www.4gamericas.org.

  35. 5G Candidate Band Study. (2015). Study on the suitability of potential candidate frequency bands above 6GHz for future 5G mobile broadband systems (Final report to Ofcom). www.quotientassociates.com.

  36. Martynov, V., Makushin, M., & Sukhoroslova, Y. (2016). Paradigm of paradigms or the internet of things. Electronics: Science, Technology, Business, 10.

    Google Scholar 

  37. Makushin, M. Ten main directions of development and problems of IoT for 2017–2018. In Express information on foreign electronic equipment (Vol. 9, No. 6597, pp. 7–11). Moscow: JSC Central Research Institute Electronics.

    Google Scholar 

  38. Starkloff, E. (2014). Wireless technologies for IoT - Incentives and development trends. Electronics: NTB, 6, 118–121.

    Google Scholar 

  39. Ericsson Mobility Report, November 2015, www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf

  40. IMT Vision - framework and overall objectives of the future development of IMT for 2020 and Beyond. International Telecommunication Union, September 2015, www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-1!!PDF-E.pdf

  41. LTE-M - optimizing LTE for the internet of things. Nokia Networks. https://gsacom.com/paper/nokia-lte-m2m-optimizing-lte-for-the-internet-of-things/

  42. Most analog cellular to fade away next week. PC World, February 2008, www.washingtonpost.com/wp-dyn/content/article/2008/02/15/AR2008021500034.html

  43. 2025 every car connected: Forecasting the growth and opportunity. SBD, February 2012, www.gsma.com/connectedliving/wp-content/uploads/2012/03/gsma2025everycarcon nected.pdf

  44. eCall Whitepaper Version 1.5. QUALCOMM, March 2009.

    Google Scholar 

  45. RF Power Amplifier and transceiver market tracker. Databeans, Q42015.

    Google Scholar 

  46. Pierpoint, M. (2014). Transition to 5G telecommunication systems - creation of communication channels with phased antenna arrays. Electronics: NTB, 6, 114–117.

    Google Scholar 

  47. Zihir, S., Curbuz, O. D., Karroy, A., Raman, S., & Rebeiz, G. M. (2015). A 60 GHz 64-element wafer-scale phased-array with full-reticle design. In 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ.

    Google Scholar 

  48. Zihir, S., Gurbuz, O. D., Karroy, A., Raman, S., & Rebeiz, G. M. (2015). A 60 GHz single-chip 256-element wafer-scale phased array with EIRP of 45 dBm using sub-reticle stitching. In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ.

    Google Scholar 

  49. Chachin, P. (2017).Use of LPWAN radio technologies for the IoT market. Electronics: NTB, 1, 140–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belous, A., Saladukha, V. (2020). Wireless Telecommunication Systems. In: High-Speed Digital System Design. Springer, Cham. https://doi.org/10.1007/978-3-030-25409-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25409-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25408-7

  • Online ISBN: 978-3-030-25409-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics