Skip to main content

Recent Developments in Vitreo-Retinal Surgery

  • Chapter
  • First Online:
Current Concepts in Ophthalmology

Abstract

Vitreo-retinal surgical techniques have transformed since the introduction of pars plana vitrectomy in 1970. Advancements include smaller gauge instrumentation, faster cut rates, improved illumination methods, wider-field viewing systems, and the use of various tamponade agents and perfluorocarbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dodo T. Diapupillary resection of vitreous opacity. Nippon Ganka Gakkai Zasshi. 1955;59:1737–45.

    Google Scholar 

  2. Dodo T, Okuzawa Y, Baba N. [Trans-pupillary resection of vitreous body opacity]. Ganka. 1969;11(1):38–44.

    Google Scholar 

  3. Kasner D, Miller GR, Taylor WH, Sever RJ, Norton EW. Surgical treatment of amyloidosis of the vitreous. Trans Am Acad Ophthalmol Otolaryngol. 1968;72(3):410–8.

    CAS  PubMed  Google Scholar 

  4. Machemer R, Buettner H, Norton EW, Parel JM. Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol. 1971;75(4):813–20.

    CAS  PubMed  Google Scholar 

  5. Machemer R. Reminiscences after 25 years of pars plana vitrectomy. Am J Ophthalmol. 1995;119(4):505–10.

    CAS  PubMed  Google Scholar 

  6. Machemer R, Parel JM, Buettner H. A new concept for vitreous surgery. I. Instrumentation. Am J Ophthalmol. 1972;73(1):1–7.

    CAS  PubMed  Google Scholar 

  7. Parel JM, Machemer R, Aumayr W. A new concept for vitreous surgery. 4. Improvements in instrumentation and illumination. Am J Ophthalmol. 1974;77(1):6–12.

    CAS  PubMed  Google Scholar 

  8. Machemer R. A new concept for vitreous surgery. 2. Surgical technique and complications. Am J Ophthalmol. 1972;74(6):1022–33.

    CAS  PubMed  Google Scholar 

  9. Peyman GA, Dodich NA. Experimental vitrectomy: instrumentation and surgical technique. Arch Ophthalmol. 1971;86(5):548–51.

    CAS  PubMed  Google Scholar 

  10. O’Malley C, Heintz RM. Vitrectomy with an alternative instrument system. Ann Ophthalmol. 1975;7(4):585–8, 591–4.

    PubMed  Google Scholar 

  11. Machemer R, Hickingbotham D. The three-port microcannular system for closed vitrectomy. Am J Ophthalmol. 1985;100(4):590–2.

    CAS  PubMed  Google Scholar 

  12. de Juan E, Hickingbotham D. Refinements in microinstrumentation for vitreous surgery. Am J Ophthalmol. 1990;109(2):218–20.

    PubMed  Google Scholar 

  13. Peyman GA. A miniaturized vitrectomy system for vitreous and retinal biopsy. Can J Ophthalmol. 1990;25(6):285–6.

    CAS  PubMed  Google Scholar 

  14. Fujii GY, De Juan E, Humayun MS, Pieramici DJ, Chang TS, Awh C, et al. A new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery. Ophthalmology. 2002;109(10):1807–12; discussion 1813.

    PubMed  Google Scholar 

  15. Fujii GY, De Juan E, Humayun MS, Chang TS, Pieramici DJ, Barnes A, et al. Initial experience using the transconjunctival sutureless vitrectomy system for vitreoretinal surgery. Ophthalmology. 2002;109(10):1814–20.

    PubMed  Google Scholar 

  16. Eckardt C. Transconjunctival sutureless 23-gauge vitrectomy. Retina. 2005;25(2):208–11.

    PubMed  Google Scholar 

  17. Oshima Y, Wakabayashi T, Sato T, Ohji M, Tano Y. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery. Ophthalmology. 2010;117(1):93–102.e2.

    PubMed  Google Scholar 

  18. Machemer R, Norton EW. A new concept for vitreous surgery. 3. Indications and results. Am J Ophthalmol. 1972;74(6):1034–56.

    CAS  PubMed  Google Scholar 

  19. Wilson D, Barr CC. Outpatient and abbreviated hospitalization for vitreoretinal surgery. Ophthalmic Surg. 1990;21(2):119–22.

    CAS  PubMed  Google Scholar 

  20. Newsom RS, Wainwright AC, Canning CR. Local anaesthesia for 1221 vitreoretinal procedures. Br J Ophthalmol. 2001;85(2):225–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang JJ, Fogel S, Leavell M. Cost analysis in vitrectomy: monitored anesthesia care and general anesthesia. AANA J. 2001;69(2):111–3.

    CAS  PubMed  Google Scholar 

  22. Wong DH. Regional anaesthesia for intraocular surgery. Can J Anaesth. 1993;40(7):635–57.

    CAS  PubMed  Google Scholar 

  23. Celiker H, Karabas L, Sahin O. A comparison of topical or retrobulbar anesthesia for 23-gauge posterior vitrectomy. J Ophthalmol. 2014;2014:237028.

    PubMed  PubMed Central  Google Scholar 

  24. Trujillo-Sanchez GP, Gonzalez-De La Rosa A, Navarro-Partida J, Haro-Morlett L, Altamirano-Vallejo JC, Santos A. Feasibility and safety of vitrectomy under topical anesthesia in an office-based setting. Indian J Ophthalmol. 2018;66(8):1136–40.

    PubMed  PubMed Central  Google Scholar 

  25. Narendran V, Kothari AR, editors. Vitreoretinal surgery systems. In: Principles and practice of vitreoretinal surgery. 1st ed. Philadelphia: Jaypee Brothers Medical Publishers Ltd; 2014. p. 53–6.

    Google Scholar 

  26. Lai TYY. Machines and cutters: Stellaris PC. Dev Ophthalmol. 2014;54:8–16.

    PubMed  Google Scholar 

  27. Charles S, Calzada J, Wood B, editors. 25-Gauge vitrectomy. In: Vitreous microsurgery. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 103–11.

    Google Scholar 

  28. Mohamed S, Claes C, Tsang CW. Review of small gauge vitrectomy: progress and innovations. J Ophthalmol. 2017;2017:6285869.

    PubMed  PubMed Central  Google Scholar 

  29. Nagpal M, Paranjpe G, Jain P, Videkar R. Advances in small-gauge vitrectomy. Taiwan J Ophthalmol. 2012;2(1):6.

    Google Scholar 

  30. Osawa S, Oshima Y. 27-Gauge vitrectomy. Dev Ophthalmol. 2014;54:54–62.

    PubMed  Google Scholar 

  31. Oellers P, Stinnett S, Hahn P. Valved versus nonvalved cannula small-gauge pars plana vitrectomy for repair of retinal detachments with Grade C proliferative vitreoretinopathy. Clin Ophthalmol. 2016;10:1001–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oellers P, Stinnett S, Mruthyunjaya P, Hahn P. Small-gauge valved versus nonvalved cannula pars plana vitrectomy for retinal detachment repair. Retina. 2016;36(4):744–9.

    PubMed  Google Scholar 

  33. Littmann H. [A new surgical microscope]. Klin Monatsblatter Augenheilkd Augenarztliche Fortbild. 1954;124(4):473–6.

    Google Scholar 

  34. Parel JM, Machemer R, Aumayr W. A new concept for vitreous surgery. 5. An automated operating microscope. Am J Ophthalmol. 1974;77(2):161–8.

    CAS  PubMed  Google Scholar 

  35. Hattenbach L-O, Framme C, Junker B, Pielen A, Agostini H, Maier M. [Intraoperative real-time OCT in macular surgery]. Ophthalmologe. 2016;113(8):656–62.

    CAS  PubMed  Google Scholar 

  36. Landers MB, Stefánsson E, Wolbarsht ML. The optics of vitreous surgery. Am J Ophthalmol. 1981;91(5):611–4.

    PubMed  Google Scholar 

  37. Bovey EH, Gonvers M. A new device for noncontact wide-angle viewing of the fundus during vitrectomy. Arch Ophthalmol. 1995;113(12):1572–3.

    CAS  PubMed  Google Scholar 

  38. Chalam KV, Shah VA. Optics of wide-angle panoramic viewing system-assisted vitreous surgery. Surv Ophthalmol. 2004;49(4):437–45.

    PubMed  Google Scholar 

  39. Inoue M. Wide-angle viewing system. Dev Ophthalmol. 2014;54:87–91.

    PubMed  Google Scholar 

  40. Chihara T, Kita M. New type of antidrying lens for vitreous surgery with a noncontact wide-angle viewing system. Clin Ophthalmol. 2013;7:353–5.

    PubMed  PubMed Central  Google Scholar 

  41. Ohji M, Tada E, Futamura H. Combining a contact lens and wide-angle viewing system for a wider fundus view. Retina. 2011;31(9):1958–60.

    PubMed  Google Scholar 

  42. Ohno H. Combined use of high-reflective index vitrectomy meniscus contact lens and a noncontact wide-angle viewing system in vitreous surgery. Clin Ophthalmol. 2011;5:1109–11.

    PubMed  PubMed Central  Google Scholar 

  43. Shah VA, Chalam KV. Self-stabilizing wide-angle contact lens for vitreous surgery. Retina. 2003;23(5):667–9.

    PubMed  Google Scholar 

  44. Mateo C, Burés-Jelstrup A. Contact versus noncontact wide-field viewing systems: why not have the best of both worlds? Retina. 2018;38(4):854–6.

    PubMed  Google Scholar 

  45. Adam MK, Thornton S, Regillo CD, Park C, Ho AC, Hsu J. Minimal endoillumination levels and display luminous emittance during three-dimensional heads-up vitreoretinal surgery. Retina. 2017;37(9):1746–9.

    PubMed  Google Scholar 

  46. Eckardt C, Paulo EB. Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina. 2016;36(1):137–47.

    PubMed  Google Scholar 

  47. Machemer R. The development of pars plana vitrectomy: a personal account. Graefes Arch Clin Exp Ophthalmol. 1995;233(8):453–68.

    CAS  PubMed  Google Scholar 

  48. Peyman GA. Improved vitrectomy illumination system. Am J Ophthalmol. 1976;81(1):99–100.

    CAS  PubMed  Google Scholar 

  49. Sakaguchi H, Oshima Y. Considering the illumination choices in vitreoretinal surgery. Retin Physician. 2012;9:26–31.

    Google Scholar 

  50. Chow DR. The evolution of endoillumination. Dev Ophthalmol. 2014;54:77–86.

    PubMed  Google Scholar 

  51. Koelbl PS, Lingenfelder C, Spraul CW, Kampmeier J, Koch FH, Kim YK, et al. An intraocular micro light-emitting diode device for endo-illumination during pars plana vitrectomy. Eur J Ophthalmol. 2019;29(1):75–81. https://doi.org/10.1177/1120672118757618.

    Article  PubMed  Google Scholar 

  52. Henrich PB, Valmaggia C, Lang C, Cattin PC. The price for reduced light toxicity: do endoilluminator spectral filters decrease color contrast during Brilliant Blue G-assisted chromovitrectomy? Graefes Arch Clin Exp Ophthalmol. 2014;252(3):367–74.

    PubMed  Google Scholar 

  53. Witmer MT, Dugel PU. Machines and cutters: constellation. In: Oh H, Oshima Y, editors. Microincision vitrectomy surgery: emerging techniques and technology. New York: Karger Medical and Scientific Publishers; 2014. p. 1–7.

    Google Scholar 

  54. Lai TYY. Machines and cutters: Stellaris PC. In: Oh H, Oshima Y, editors. Microincision vitrectomy surgery: emerging techniques and technology. New York: Karger Medical and Scientific Publishers; 2014. p. 8–16.

    Google Scholar 

  55. Morales-Canton V, Kawakami-Campos PA. Machines and cutters: VersaVIT—potential and perspectives of office-based vitrectomy. In: Oh H, Oshima Y, editors. Microincision vitrectomy surgery: emerging techniques and technology. New York: Karger Medical and Scientific Publishers; 2014. p. 17–22.

    Google Scholar 

  56. Seider MI, Nomides REK, Hahn P, Mruthyunjaya P, Mahmoud TH. Scleral buckling with chandelier illumination. J Ophthalmic Vis Res. 2016;11(3):304–9.

    PubMed  PubMed Central  Google Scholar 

  57. Rodrigues EB, Meyer CH, Kroll P. Chromovitrectomy: a new field in vitreoretinal surgery. Graefes Arch Clin Exp Ophthalmol. 2005;243(4):291–3.

    PubMed  Google Scholar 

  58. Kadonosono K, Itoh N, Uchio E, Nakamura S, Ohno S. Staining of internal limiting membrane in macular hole surgery. Arch Ophthalmol. 2000;118(8):1116–8.

    CAS  PubMed  Google Scholar 

  59. Grisanti S, Altvater A, Peters S. Safety parameters for indocyanine green in vitreoretinal surgery. Dev Ophthalmol. 2008;42:43–68.

    CAS  PubMed  Google Scholar 

  60. Al-Halafi AM. Chromovitrectomy: update. Saudi J Ophthalmol. 2013;27(4):271–6.

    PubMed  PubMed Central  Google Scholar 

  61. Margherio RR, Margherio AR, Pendergast SD, Williams GA, Garretson BR, Strong LE, et al. Vitrectomy for retained lens fragments after phacoemulsification. Ophthalmology. 1997;104(9):1426–32.

    CAS  PubMed  Google Scholar 

  62. Ho SF, Zaman A. Clinical features and outcomes of pars plana vitrectomy in patients with retained lens fragments after phacoemulsification. J Cataract Refract Surg. 2007;33(12):2106–10.

    PubMed  Google Scholar 

  63. Hansson LJ, Larsson J. Vitrectomy for retained lens fragments in the vitreous after phacoemulsification. J Cataract Refract Surg. 2002;28(6):1007–11.

    PubMed  Google Scholar 

  64. Borne MJ, Tasman W, Regillo C, Malecha M, Sarin L. Outcomes of vitrectomy for retained lens fragments. Ophthalmology. 1996;103(6):971–6.

    CAS  PubMed  Google Scholar 

  65. Scott IU, Flynn HW Jr, Smiddy WE, Murray TG, Moore JK, Lemus DR, et al. Clinical features and outcomes of pars plana vitrectomy in patients with retained lens fragments. Ophthalmology. 2003;110(8):1567–72.

    PubMed  Google Scholar 

  66. Ho LY, Doft BH, Wang L, Bunker CH. Clinical predictors and outcomes of pars plana vitrectomy for retained lens material after cataract extraction. Am J Ophthalmol. 2009;147(4):587–594.e1.

    PubMed  Google Scholar 

  67. Kadonosono K, Yamakawa T, Uchio E, Yanagi Y, Tamaki Y, Araie M. Comparison of visual function after epiretinal membrane removal by 20-gauge and 25-gauge vitrectomy. Am J Ophthalmol. 2006;142(3):513–5.

    PubMed  Google Scholar 

  68. Chang C-J, Chang Y-H, Chiang S-Y, Lin L-T. Comparison of clear corneal phacoemulsification combined with 25-gauge transconjunctival sutureless vitrectomy and standard 20-gauge vitrectomy for patients with cataract and vitreoretinal diseases. J Cataract Refract Surg. 2005;31(6):1198–207.

    PubMed  Google Scholar 

  69. Cho M, Chan RP. 23-gauge pars plana vitrectomy for management of posteriorly dislocated crystalline lens. Clin Ophthalmol. 2011;5:1737–43.

    PubMed  PubMed Central  Google Scholar 

  70. Arevalo JF, Berrocal MH, Arias JD, Banaee T. Minimally invasive vitreoretinal surgery: is sutureless vitrectomy the future of vitreoretinal surgery? J Ophthalmic Vis Res. 2011;6(2):136–44.

    PubMed  Google Scholar 

  71. Shah GK, Ho VY. Vitrectomy platforms go to the next level. Retina Spec [Internet]. 2016. http://www.retina-specialist.com/article/noninfectious-uveitis-enriching-our-toolbox-1. [Cited 2018 Sept 17].

  72. Kuhn F, Mester V, Berta A. The Tano Diamond Dusted Membrane Scraper: indications and contraindications. Acta Ophthalmol Scand. 1998;76(6):754–5.

    CAS  PubMed  Google Scholar 

  73. Hsu J. Nitinol flex loop-assisted retrieval and sutureless intrascleral refixation of a dislocated intraocular lens implant. Retin Cases Brief Rep. 2018; E-pub before print.

    Google Scholar 

  74. Charles S, Calzada J, Wood B, editors. General posterior segment techniques. In: Vitreous microsurgery. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 45–75.

    Google Scholar 

  75. Villegas V, Murray T. Know your retinal surgery toolbox. Retin Physician. 2018;15:24–9.

    Google Scholar 

  76. Charles S, Calzada J, Wood B, editors. Vitrectomy for retinal detachment. In: Vitreous microsurgery. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 135–8.

    Google Scholar 

  77. Kuhn F. Endolaser. In: Kuhn F, editor. Vitreoretinal surgery: strategies and tactics [Internet]. Cham: Springer International Publishing; 2016. p. 263–76. https://doi.org/10.1007/978-3-319-19479-0_30. [Cited 2018 Sept 24].

    Chapter  Google Scholar 

  78. Barak Y, Lee ES, Schaal S. Sealing effect of external diathermy on leaking sclerotomies after small-gauge vitrectomy: a clinicopathological report. JAMA Ophthalmol. 2014;132(7):891–2.

    PubMed  Google Scholar 

  79. Reibaldi M, Longo A, Reibaldi A, Avitabile T, Pulvirenti A, Lippolis G, et al. Diathermy of leaking sclerotomies after 23-gauge transconjunctival pars plana vitrectomy: a prospective study. Retina. 2013;33(5):939–45.

    PubMed  Google Scholar 

  80. Jusufbegovic D, Ozkok A, Schaal S. Intraoperative optical coherence tomography validates the immediate efficacy of external diathermy in sealing 25-gauge sclerotomy wounds. Retina. 2017;37(2):402–4.

    PubMed  Google Scholar 

  81. Chang S. Low viscosity liquid fluorochemicals in vitreous surgery. Am J Ophthalmol. 1987;103(1):38–43.

    CAS  PubMed  Google Scholar 

  82. Georgalas I, Ladas I, Tservakis I, Taliantzis S, Gotzaridis E, Papaconstantinou D, et al. Perfluorocarbon liquids in vitreoretinal surgery: a review of applications and toxicity. Cutan Ocul Toxicol. 2011;30(4):251–62.

    CAS  PubMed  Google Scholar 

  83. Randolph JC, Diaz RI, Sigler EJ, Calzada JI, Charles S. 25-gauge pars plana vitrectomy with medium-term postoperative perfluoro-n-octane for the repair of giant retinal tears. Graefes Arch Clin Exp Ophthalmol. 2016;254(2):253–7.

    CAS  PubMed  Google Scholar 

  84. Eiger-Moscovich M, Gershoni A, Axer-Siegel R, Weinberger D, Ehrlich R. Short-term vitreoretinal tamponade with heavy liquid following surgery for giant retinal tear. Curr Eye Res. 2017;42(7):1074–8.

    CAS  PubMed  Google Scholar 

  85. Zhang Z, Wei Y, Jiang X, Zhang S. Surgical outcomes of 27-gauge pars plana vitrectomy with short-term postoperative tamponade of perfluorocarbon liquid for repair of giant retinal tears. Int Ophthalmol. 2018;38(4):1505–13.

    PubMed  Google Scholar 

  86. Mikhail MA, Mangioris G, Best RM, McGimpsey S, Chan WC. Management of giant retinal tears with vitrectomy and perfluorocarbon liquid postoperatively as a short-term tamponade. Eye. 2017;31(9):1290–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamei M, Tano Y. Tissue plasminogen activator-assisted vitrectomy: surgical drainage of submacular hemorrhage. Dev Ophthalmol. 2009;44:82–8.

    CAS  PubMed  Google Scholar 

  88. Vander JF. Tissue plasminogen activator irrigation to facilitate removal of subretinal hemorrhage during vitrectomy. Ophthalmic Surg. 1992;23(5):361–3.

    CAS  PubMed  Google Scholar 

  89. Kamei M, Tano Y, Maeno T, Ikuno Y, Mitsuda H, Yuasa T. Surgical removal of submacular hemorrhage using tissue plasminogen activator and perfluorocarbon liquid. Am J Ophthalmol. 1996;121(3):267–75.

    CAS  PubMed  Google Scholar 

  90. Moriarty AP, McAllister IL, Constable IJ. Initial clinical experience with tissue plasminogen activator (tPA) assisted removal of submacular haemorrhage. Eye. 1995;9(Pt 5):582–8.

    PubMed  Google Scholar 

  91. Moisseiev E, Ben Ami T, Barak A. Vitrectomy and subretinal injection of tissue plasminogen activator for large submacular hemorrhage secondary to AMD. Eur J Ophthalmol. 2014;24(6):925–31.

    PubMed  Google Scholar 

  92. Peyman GA, Nelson NC, Alturki W, Blinder KJ, Paris CL, Desai UR, et al. Tissue plasminogen activating factor assisted removal of subretinal hemorrhage. Ophthalmic Surg. 1991;22(10):575–82.

    CAS  PubMed  Google Scholar 

  93. Lim JI, Drews-Botsch C, Sternberg P, Capone A, Aaberg TM. Submacular hemorrhage removal. Ophthalmology. 1995;102(9):1393–9.

    CAS  PubMed  Google Scholar 

  94. Ghazi NG, Abboud EB, Nowilaty SR, Alkuraya H, Alhommadi A, Cai H, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet. 2016;135(3):327–43.

    CAS  PubMed  Google Scholar 

  95. Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology. 2013;120(6):1283–91.

    PubMed  PubMed Central  Google Scholar 

  96. Mühlfriedel R, Michalakis S, Garcia Garrido M, Biel M, Seeliger MW. Optimized technique for subretinal injections in mice. Methods Mol Biol. 2013;935:343–9.

    PubMed  Google Scholar 

  97. Ikeda Y, Yonemitsu Y, Miyazaki M, Kohno R-I, Murakami Y, Murata T, et al. Stable retinal gene expression in nonhuman primates via subretinal injection of SIVagm-based lentiviral vectors. Hum Gene Ther. 2009;20(6):573–9.

    CAS  PubMed  Google Scholar 

  98. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Google Scholar 

  99. da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328.

    PubMed  Google Scholar 

  100. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46.

    CAS  PubMed  Google Scholar 

  101. Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097.

    PubMed  Google Scholar 

  102. Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2014;2(2):205–18.

    CAS  Google Scholar 

  103. Kuhn F, Aylward B. Rhegmatogenous retinal detachment: a reappraisal of its pathophysiology and treatment. Ophthalmic Res. 2014;51(1):15–31.

    PubMed  Google Scholar 

  104. Gomaa AR, Elbaha SM. Applying sutureless encircling number 41 band and transscleral chandelier-assisted laser retinopexy for scleral buckling procedure. J Ophthalmol. 2017;2017:4671305.

    PubMed  PubMed Central  Google Scholar 

  105. Heimann H, Hellmich M, Bornfeld N, Bartz-Schmidt KU, Hilgers RD, Foerster MH. Scleral buckling versus primary vitrectomy in rhegmatogenous retinal detachment (SPR Study): design issues and implications. SPR Study report no. 1. Graefes Arch Clin Exp Ophthalmol. 2001;239(8):567–74.

    CAS  PubMed  Google Scholar 

  106. Foster WJ, Dowla N, Joshi SY, Nikolaou M. The fluid mechanics of scleral buckling surgery for the repair of retinal detachment. Graefes Arch Clin Exp Ophthalmol. 2010;248(1):31–6.

    PubMed  Google Scholar 

  107. Storey P, Alshareef R, Khuthaila M, London N, Leiby B, DeCroos C, et al. Pars plana vitrectomy and scleral buckle versus pars plana vitrectomy alone for patients with rhegmatogenous retinal detachment at high risk for proliferative vitreoretinopathy. Retina. 2014;34(10):1945–51.

    PubMed  Google Scholar 

  108. Crama N, Klevering BJ. The removal of hydrogel explants: an analysis of 467 consecutive cases. Ophthalmology. 2016;123(1):32–8.

    PubMed  Google Scholar 

  109. Yoshizumi MO, Friberg T. Erosion of implants in retinal detachment surgery. Ann Ophthalmol. 1983;15(5):430–4.

    CAS  PubMed  Google Scholar 

  110. Shanmugam PM, Ramanjulu R, Mishra KCD, Sagar P. Novel techniques in scleral buckling. Indian J Ophthalmol. 2018;66(7):909–15.

    PubMed  PubMed Central  Google Scholar 

  111. Hu Y, Si S, Xu K, Chen H, Han L, Wang X, et al. Outcomes of scleral buckling using chandelier endoillumination. Acta Ophthalmol (Copenh). 2017;95(6):591–4.

    CAS  Google Scholar 

  112. Imai H, Tagami M, Azumi A. Scleral buckling for primary rhegmatogenous retinal detachment using noncontact wide-angle viewing system with a cannula-based 25 G chandelier endoilluminator. Clin Ophthalmol. 2015;9:2103–7.

    PubMed  PubMed Central  Google Scholar 

  113. Ohm J. Über die Behandlung der Netzhautablösung durch operative Entleerung der subretinalen Flüssigkeit und Einspritzung von Luft in den Glaskörper [On the treatment of retinal detachment by surgical evacuation of subretinal fluid and injection of air into the vitreous]. Albrecht Von Graefes Arch Für Ophthalmol. 1911;79(3):442–50.

    Google Scholar 

  114. Cibis PA, Becker B, Okun E, Canaan S. The use of liquid silicone in retinal detachment surgery. Arch Ophthalmol. 1962;68:590–9.

    CAS  PubMed  Google Scholar 

  115. Norton EW. Intraocular gas in the management of selected retinal detachments. Trans Am Acad Ophthalmol Otolaryngol. 1973;77(2):OP85–98.

    CAS  PubMed  Google Scholar 

  116. Mohamed S, Lai TY. Intraocular gas in vitreoretinal surgery. Hong Kong J Ophthalmol. 2010;14(1):8–13.

    Google Scholar 

  117. Kreissig I. The perfluorocarbon gases. In: A practical guide to minimal surgery for retinal detachment. 1st ed. Stuttgart: Thieme; 2000. p. 129–32.

    Google Scholar 

  118. Williamson TH. Principles of internal tamponade. In: Vitreoretinal surgery [Internet]. 2nd ed. Berlin: Springer; 2013. p. 61–87. //www.springer.com/us/book/9783642318719. [Cited 2018 Sept 16].

    Google Scholar 

  119. Abrams GW, Azen SP, McCuen BW, Flynn HW, Lai MY, Ryan SJ. Vitrectomy with silicone oil or long-acting gas in eyes with severe proliferative vitreoretinopathy: results of additional and long-term follow-up. Silicone Study report 11. Arch Ophthalmol. 1997;115(3):335–44.

    CAS  PubMed  Google Scholar 

  120. Adelman RA, Parnes AJ, Sipperley JO, Ducournau D, European Vitreo-Retinal Society (EVRS) Retinal Detachment Study Group. Strategy for the management of complex retinal detachments: the European vitreo-retinal society retinal detachment study report 2. Ophthalmology. 2013;120(9):1809–13.

    PubMed  Google Scholar 

  121. Foster WJ. Vitreous substitutes. Expert Rev Ophthalmol. 2008;3(2):211–8.

    PubMed  PubMed Central  Google Scholar 

  122. Cazabon S, Hillier RJ, Wong D. Heavy silicone oil: a “novel” intraocular tamponade agent. Optom Vis Sci. 2011;88(6):772–5.

    PubMed  Google Scholar 

  123. Rizzo S, Romagnoli MC, Genovesi-Ebert F, Belting C. Surgical results of heavy silicone oil HWS-45 3000 as internal tamponade for inferior retinal detachment with PVR: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2011;249(3):361–7.

    PubMed  Google Scholar 

  124. Er H. Primary heavy silicone oil usage in inferior rhegmatogenous retinal detachment. Ophthalmologica. 2010;224(2):122–5.

    CAS  PubMed  Google Scholar 

  125. Levasseur SD, Schendel S, Machuck RWA, Dhanda D. High-density silicone oil Densiron-68 as an intraocular tamponade for primary inferior retinal detachments. Retina. 2013;33(3):627–33.

    CAS  PubMed  Google Scholar 

  126. Reza AT. Postoperative Perfluro-N-Octane tamponade for complex retinal detachment surgery. Bangladesh Med Res Counc Bull. 2014;40(2):63–9.

    PubMed  Google Scholar 

  127. Sigler EJ, Randolph JC, Calzada JI, Charles S. Pars plana vitrectomy with medium-term postoperative perfluoro-N-octane for recurrent inferior retinal detachment complicated by advanced proliferative vitreoretinopathy. Retina. 2013;33(4):791–7.

    CAS  PubMed  Google Scholar 

  128. Rizzo S, Genovesi-Ebert F, Murri S, Belting C, Vento A, Cresti F, et al. 25-gauge, sutureless vitrectomy and standard 20-gauge pars plana vitrectomy in idiopathic epiretinal membrane surgery: a comparative pilot study. Graefes Arch Clin Exp Ophthalmol. 2006;244(4):472–9.

    PubMed  Google Scholar 

  129. Khan MA, Kuley A, Riemann CD, Berrocal MH, Lakhanpal RR, Hsu J, et al. Long-term visual outcomes and safety profile of 27-gauge pars plana vitrectomy for posterior segment disease. Ophthalmology. 2018;125(3):423–31.

    PubMed  Google Scholar 

  130. Tayyab H, Khan AA, Sadiq MAA, Karamat I. Comparison of 23 gauge transconjunctival releasable suture vitrectomy with standard 20 gauge vitrectomy. Pak J Med Sci. 2018;34(2):328–32.

    PubMed  PubMed Central  Google Scholar 

  131. Xia F, Jiang Y-Q. Clinical outcomes of 23-gauge vitrectomy may be better than 20-gauge vitrectomy for retinal detachment repair. Mol Vis. 2015;21:893–900.

    PubMed  PubMed Central  Google Scholar 

  132. Ho J, Grabowska A, Ugarte M, Muqit MM. A comparison of 23-gauge and 20-gauge vitrectomy for proliferative sickle cell retinopathy—clinical outcomes and surgical management. Eye (Lond). 2018;32(9):1449–54.

    Google Scholar 

  133. Ho VY, Shah GK. Short-and long-term outcomes of vitreoretinal surgeries with deferred first postoperative visits at day 3 or later. J Vitreoretinal Dis. 2017;1(2):126–32.

    Google Scholar 

  134. Ringeisen AL, Parke DW. Reconsidering the postoperative day 0 visit for retina surgery. Ophthalmic Surg Lasers Imaging Retina. 2018;49(9):e52–6.

    PubMed  Google Scholar 

  135. Rahmani S, Eliott D. Postoperative endophthalmitis: a review of risk factors, prophylaxis, incidence, microbiology, treatment, and outcomes. Semin Ophthalmol. 2018;33(1):95–101.

    PubMed  Google Scholar 

  136. Kunimoto DY, Kaiser RS, Wills Eye Retina Service. Incidence of endophthalmitis after 20- and 25-gauge vitrectomy. Ophthalmology. 2007;114(12):2133–7.

    PubMed  Google Scholar 

  137. Scott IU, Flynn HW Jr, Acar N, Dev S, Shaikh S, Mittra RA, et al. Incidence of endophthalmitis after 20-gauge vs 23-gauge vs 25-gauge pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2011;249(3):377–80.

    PubMed  Google Scholar 

  138. Wu L, Berrocal MH, Arévalo JF, Carpentier C, Rodriguez FJ, Alezzandrini A, et al. Endophthalmitis after pars plana vitrectomy: results of the Pan American Collaborative Retina Study Group. Retina. 2011;31(4):673–8.

    PubMed  Google Scholar 

  139. Rizzo S, Belting C, Genovesi-Ebert F, di Bartolo E. Incidence of retinal detachment after small-incision, sutureless pars plana vitrectomy compared with conventional 20-gauge vitrectomy in macular hole and epiretinal membrane surgery. Retina. 2010;30(7):1065–71.

    PubMed  Google Scholar 

  140. Neffendorf JE, Gupta B, Williamson TH. Intraoperative complications of patients undergoing small-gauge and 20-gauge vitrectomy: a database study of 4,274 procedures. Eur J Ophthalmol. 2017;27(2):226–30.

    PubMed  Google Scholar 

  141. Gass JD. Sympathetic ophthalmia following vitrectomy. Am J Ophthalmol. 1982;93(5):552–8.

    CAS  PubMed  Google Scholar 

  142. Gupta OPI, Weichel ED, Regillo CD, Fineman MS, Kaiser RS, Ho AC, et al. Postoperative complications associated with 25-gauge pars plana vitrectomy. Ophthalmic Surg Lasers Imaging. 2007;38(4):270–5.

    PubMed  Google Scholar 

  143. Roizenblatt M, Edwards TL, Gehlbach PL. Robot-assisted vitreoretinal surgery: current perspectives. Robot Surg. 2018;5:1–11.

    PubMed  PubMed Central  Google Scholar 

  144. Gonenc B, Handa J, Gehlbach P, Taylor RH, Iordachita I. A comparative study for robot assisted vitreoretinal surgery: micron vs. the steady-hand robot. IEEE Int Conf Robot Autom. 2013;2013:4832–7.

    Google Scholar 

  145. Balicki M, Xia T, Jung MY, Deguet A, Vagvolgyi B, Kazanzides P, Taylor R. Prototyping a hybrid cooperative and tele-robotic surgical system for retinal microsurgery. MIDAS J. 2011; E-pub Dec 2011.

    Google Scholar 

  146. Gonenc B, Handa J, Gehlbach P, Taylor RH, Iordachita I. Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5686–9.

    PubMed  PubMed Central  Google Scholar 

  147. Edwards TL, Xue K, Meenink HCM, Beelen MJ, Naus GJL, Simunovic MP, et al. First-in-human study of the safety and viability of intraocular robotic surgery. Nat Biomed Eng. 2018;2:649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, et al. Optical coherence tomography for retinal surgery: perioperative analysis to real-time four-dimensional image-guided surgery. Invest Ophthalmol Vis Sci. 2016;57(9):OCT37–50.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry W. Flynn Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Idrees, S., Kuriyan, A.E., Schwartz, S.G., Parel, JM., Flynn, H.W. (2020). Recent Developments in Vitreo-Retinal Surgery. In: Grzybowski, A. (eds) Current Concepts in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-25389-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25389-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25388-2

  • Online ISBN: 978-3-030-25389-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics