Skip to main content

Recent Advances in Uveitis

  • Chapter
  • First Online:
Current Concepts in Ophthalmology

Abstract

The uveitides are a collection of more than 30 diseases manifesting as intraocular inflammation. Diagnosis can be a challenge with different conditions presenting with similar signs and symptoms. Many of these conditions require prompt treatment using systemic and local therapy, with the aim of preventing vision loss. In this chapter we describe the recent advances in the diagnosis of uveitis, including the use of ultra-wide field imaging and optical coherence tomography angiography. We further focus on the management of specific infectious and non-infectious causes of uveitis, using both systemic immunosuppression and local treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomkins-Netzer O, Talat L, Bar A, et al. Long-term clinical outcome and causes of vision loss in patients with uveitis. Ophthalmology. 2014;121(12):2387–92.

    Article  PubMed  Google Scholar 

  2. Jabs DA. Immunosuppression for the Uveitides. Ophthalmology. 2018;125(2):193–202.

    Article  PubMed  Google Scholar 

  3. Jabs DA, Busingye J. Approach to the diagnosis of the uveitides. Am J Ophthalmol. 2013;156(2):228–36.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140(3):509–16.

    Article  PubMed  Google Scholar 

  5. Jabs DA, Dick A, Doucette JT, et al. Interobserver agreement among uveitis experts on uveitic diagnoses: the standardization of uveitis nomenclature experience. Am J Ophthalmol. 2018;186:19–24.

    Article  PubMed  Google Scholar 

  6. Campbell JP, Leder HA, Sepah YJ, et al. Wide-field retinal imaging in the management of noninfectious posterior uveitis. Am J Ophthalmol. 2012;154(5):908–11 e2.

    Article  PubMed  Google Scholar 

  7. Aggarwal K, Mulkutkar S, Mahajan S, et al. Role of ultra-wide field imaging in the management of tubercular posterior uveitis. Ocul Immunol Inflamm. 2016;24(6):631–6.

    Article  PubMed  Google Scholar 

  8. Mesquida M, Llorenc V, Fontenla JR, et al. Use of ultra-wide-field retinal imaging in the management of active Behcet retinal vasculitis. Retina. 2014;34(10):2121–7.

    Article  PubMed  Google Scholar 

  9. Spaide RF, Fujimoto JG, Waheed NK. Optical coherence tomography angiography. Retina. 2015;35(11):2161–2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Levison AL, Baynes KM, Lowder CY, et al. Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis. Br J Ophthalmol. 2017;101(5):616–22.

    Article  PubMed  Google Scholar 

  11. Lavinsky F, Lavinsky D. Novel perspectives on swept-source optical coherence tomography. Int J Retina Vitreous. 2016;2:25.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dastiridou AI, Bousquet E, Kuehlewein L, et al. Choroidal imaging with swept-source optical coherence tomography in patients with birdshot chorioretinopathy: choroidal reflectivity and thickness. Ophthalmology. 2017;124(8):1186–95.

    Article  PubMed  Google Scholar 

  13. Hosoda Y, Uji A, Hangai M, et al. Relationship between retinal lesions and inward choroidal bulging in Vogt-Koyanagi-Harada disease. Am J Ophthalmol. 2014;157(5):1056–63.

    Article  PubMed  Google Scholar 

  14. Juanola X, Loza Santamaria E, Cordero-Coma M, Group SW. Description and prevalence of spondyloarthritis in patients with anterior uveitis: the SENTINEL Interdisciplinary Collaborative Project. Ophthalmology. 2016;123(8):1632–6.

    Article  PubMed  Google Scholar 

  15. Bodis G, Toth V, Schwarting A. Role of human leukocyte antigens (HLA) in autoimmune diseases. Rheumatol Ther. 2018;5(1):5–20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wakefield D, Yates W, Amjadi S, McCluskey P. HLA-B27 anterior uveitis: immunology and immunopathology. Ocul Immunol Inflamm. 2016;24(4):450–9.

    Article  CAS  PubMed  Google Scholar 

  17. Sykes MP, Hamilton L, Jones C, Gaffney K. Prevalence of axial spondyloarthritis in patients with acute anterior uveitis: a cross-sectional study utilising MRI. RMD Open. 2018;4(1):e000553.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Haroon M, O'Rourke M, Ramasamy P, et al. A novel evidence-based detection of undiagnosed spondyloarthritis in patients presenting with acute anterior uveitis: the DUET (Dublin Uveitis Evaluation Tool). Ann Rheum Dis. 2015;74(11):1990–5.

    Article  PubMed  Google Scholar 

  19. Kim M, Won JY, Choi SY, et al. Anti-TNFalpha treatment for HLA-B27-positive ankylosing spondylitis-related uveitis. Am J Ophthalmol. 2016;170:32–40.

    Article  CAS  PubMed  Google Scholar 

  20. Levy-Clarke G, Jabs DA, Read RW, et al. Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology. 2014;121(3):785–96 e3.

    Article  PubMed  Google Scholar 

  21. Guignard S, Gossec L, Salliot C, et al. Efficacy of tumour necrosis factor blockers in reducing uveitis flares in patients with spondylarthropathy: a retrospective study. Ann Rheum Dis. 2006;65(12):1631–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wendling D, Prati C. Paradoxical effects of anti-TNF-alpha agents in inflammatory diseases. Expert Rev Clin Immunol. 2014;10(1):159–69.

    Article  CAS  PubMed  Google Scholar 

  23. Fabiani C, Vitale A, Lopalco G, et al. Different roles of TNF inhibitors in acute anterior uveitis associated with ankylosing spondylitis: state of the art. Clin Rheumatol. 2016;35(11):2631–8.

    Article  PubMed  Google Scholar 

  24. Braun J, Davis J, Dougados M, et al. First update of the international ASAS consensus statement for the use of anti-TNF agents in patients with ankylosing spondylitis. Ann Rheum Dis. 2006;65(3):316–20.

    Article  CAS  PubMed  Google Scholar 

  25. Rudwaleit M, Rodevand E, Holck P, et al. Adalimumab effectively reduces the rate of anterior uveitis flares in patients with active ankylosing spondylitis: results of a prospective open-label study. Ann Rheum Dis. 2009;68(5):696–701.

    Article  CAS  PubMed  Google Scholar 

  26. Ma S, Rogers SL, Hall AJ, et al. Sarcoidosis related uveitis: clinical presentations, disease course and rates of systemic disease progression after uveitis diagnosis. Am J Ophthalmol. 2019;198:30–6.

    Article  PubMed  Google Scholar 

  27. Mochizuki M, Smith JR, Takase H for the International Workshop on Ocular Sarcoidosis Study Group, et al. Revised criteria of International Workshop on Ocular Sarcoidosis (IWOS) for the diagnosis of ocular sarcoidosis. Br J Ophthalmol. 2019;103:1418–22.

    Article  Google Scholar 

  28. Gundlach E, Hoffmann MM, Prasse A, et al. Interleukin-2 receptor and angiotensin-converting enzyme as markers for ocular sarcoidosis. PLoS One. 2016;11(1):e0147258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sahin O, Ziaei A, Karaismailoglu E, et al. The serum angiotensin converting enzyme and lysozyme levels in patients with ocular involvement of autoimmune and infectious diseases. BMC Ophthalmol. 2016;16:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Acharya NR, Browne EN, Rao N, et al. Distinguishing features of ocular sarcoidosis in an international cohort of uveitis patients. Ophthalmology. 2018;125(1):119–26.

    Article  PubMed  Google Scholar 

  31. Niederer RL, Al-Janabi A, Lightman SL, et al. Serum angiotensin-converting enzyme has a high negative predictive value in the investigation for systemic sarcoidosis. Am J Ophthalmol. 2018;194:82–7.

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez GE, Shin BC, Abernathy RS, et al. Serum angiotensin-converting enzyme activity in normal children and in those with sarcoidosis. J Pediatr. 1981;99(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  33. Matsou A, Tsaousis KT. Management of chronic ocular sarcoidosis: challenges and solutions. Clin Ophthalmol. 2018;12:519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rothova A. Ocular involvement in sarcoidosis. Br J Ophthalmol. 2000;84(1):110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niederer RL, Sharief L, Bar A, et al. Predictors of long-term visual outcome in intermediate uveitis. Ophthalmology. 2017;124(3):393–8.

    Article  PubMed  Google Scholar 

  36. Lee SY, Lee HG, Kim DS, et al. Ocular sarcoidosis in a Korean population. J Korean Med Sci. 2009;24(3):413–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miserocchi E, Modorati G, Di Matteo F, et al. Visual outcome in ocular sarcoidosis: retrospective evaluation of risk factors. Eur J Ophthalmol. 2011;21(6):802–10.

    Article  PubMed  Google Scholar 

  38. Kaneko F, Togashi A, Saito S, et al. Behcet’s disease (Adamantiades-Behcet’s disease). Clin Dev Immunol. 2011;2011:681956.

    Article  PubMed  CAS  Google Scholar 

  39. Zouboulis CC. Epidemiology of Adamantiades-Behcet’s disease. Ann Med Interne (Paris). 1999;150(6):488–98.

    CAS  Google Scholar 

  40. Hatemi G, Yazici Y, Yazici H. Behcet’s syndrome. Rheum Dis Clin North Am. 2013;39(2):245–61.

    Article  PubMed  Google Scholar 

  41. Fabiani C, Alio JL. Local (topical and intraocular) therapy for ocular Adamantiades-Behcet’s disease. Curr Opin Ophthalmol. 2015;26(6):546–52.

    Article  PubMed  Google Scholar 

  42. Figus M, Posarelli C, Albert TG, et al. A clinical picture of the visual outcome in Adamantiades-Behcet’s disease. Biomed Res Int. 2015;2015:120519.

    PubMed  PubMed Central  Google Scholar 

  43. Arayssi T, Hamdan A. New insights into the pathogenesis and therapy of Behcet’s disease. Curr Opin Pharmacol. 2004;4(2):183–8.

    Article  CAS  PubMed  Google Scholar 

  44. Zamecki KJ, Jabs DA. HLA typing in uveitis: use and misuse. Am J Ophthalmol. 2010;149(2):189–93 e2.

    Article  CAS  PubMed  Google Scholar 

  45. International Team for the Revision of the International Criteria for Behcet's D. The International Criteria for Behcet’s Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol. 2014;28(3):338–47.

    Article  Google Scholar 

  46. Blake T, Pickup L, Carruthers D, et al. Birmingham Behcet's service: classification of disease and application of the 2014 International Criteria for Behcet’s disease (ICBD) to a UK cohort. BMC Musculoskelet Disord. 2017;18(1):101.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Amer R, Alsughayyar W, Almeida D. Pattern and causes of visual loss in Behcet’s uveitis: short-term and long-term outcomes. Graefes Arch Clin Exp Ophthalmol. 2017;255(7):1423–32.

    Article  PubMed  Google Scholar 

  48. Cunningham ET Jr, Tugal-Tutkun I, Khairallah M, et al. Behcet uveitis. Ocul Immunol Inflamm. 2017;25(1):2–6.

    Article  PubMed  Google Scholar 

  49. Keino H, Okada AA, Watanabe T, et al. Efficacy of infliximab for early remission induction in refractory uveoretinitis associated with Behcet disease: a 2-year follow-up study. Ocul Immunol Inflamm. 2017;25(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  50. Martin-Varillas JL, Calvo-Rio V, Beltran E, et al. Successful optimization of adalimumab therapy in refractory uveitis due to Behcet’s disease. Ophthalmology. 2018;125(9):1444–51.

    Article  PubMed  Google Scholar 

  51. Fabiani C, Vitale A, Emmi G, et al. Efficacy and safety of adalimumab in Behcet’s disease-related uveitis: a multicenter retrospective observational study. Clin Rheumatol. 2017;36(1):183–9.

    Article  PubMed  Google Scholar 

  52. Lightman S, Taylor SR, Bunce C, et al. Pegylated interferon-alpha-2b reduces corticosteroid requirement in patients with Behcet’s disease with upregulation of circulating regulatory T cells and reduction of Th17. Ann Rheum Dis. 2015;74(6):1138–44.

    Article  CAS  PubMed  Google Scholar 

  53. Diwo E, Gueudry J, Saadoun D, et al. Long-term efficacy of interferon in severe uveitis associated with Behcet disease. Ocul Immunol Inflamm. 2017;25(1):76–84.

    Article  CAS  PubMed  Google Scholar 

  54. Hasanreisoglu M, Cubuk MO, Ozdek S, et al. Interferon alpha-2a therapy in patients with refractory Behcet uveitis. Ocul Immunol Inflamm. 2017;25(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  55. Tomkins-Netzer O, Talat L, Ismetova F, et al. Immunomodulatory therapy in uveitis. Dev Ophthalmol. 2016;55:265–75.

    Article  PubMed  Google Scholar 

  56. Suhler EB, Thorne JE, Mittal M, et al. Corticosteroid-related adverse events systematically increase with corticosteroid dose in noninfectious intermediate, posterior, or panuveitis: post hoc analyses from the VISUAL-1 and VISUAL-2 trials. Ophthalmology. 2017;124(12):1799–807.

    Article  PubMed  Google Scholar 

  57. Rathinam SR, Babu M, Thundikandy R, et al. A randomized clinical trial comparing methotrexate and mycophenolate mofetil for noninfectious uveitis. Ophthalmology. 2014;121(10):1863–70.

    Article  PubMed  Google Scholar 

  58. Weinstein JE, Pepple KL. Cytokines in uveitis. Curr Opin Ophthalmol. 2018;29(3):267–74.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Taylor SR, Singh J, Menezo V, et al. Behcet disease: visual prognosis and factors influencing the development of visual loss. Am J Ophthalmol. 2011;152:1059–66.

    Article  PubMed  Google Scholar 

  60. Jaffe GJ, Dick AD, Brezin AP, et al. Adalimumab in patients with active noninfectious uveitis. N Engl J Med. 2016;375(10):932–43.

    Article  CAS  PubMed  Google Scholar 

  61. Nguyen QD, Merrill PT, Jaffe GJ, et al. Adalimumab for prevention of uveitic flare in patients with inactive non-infectious uveitis controlled by corticosteroids (VISUAL II): a multicentre, double-masked, randomised, placebo-controlled phase 3 trial. Lancet. 2016;388(10050):1183–92.

    Article  CAS  PubMed  Google Scholar 

  62. Suhler EB, Adan A, Brezin AP, et al. Safety and efficacy of adalimumab in patients with noninfectious uveitis in an ongoing open-label study: VISUAL III. Ophthalmology. 2018;125(7):1075–87.

    Article  PubMed  Google Scholar 

  63. Ramanan AV, Dick AD, Jones AP, et al. Adalimumab plus methotrexate for uveitis in juvenile idiopathic arthritis. N Engl J Med. 2017;376(17):1637–46.

    Article  CAS  PubMed  Google Scholar 

  64. Vallet H, Seve P, Biard L, et al. Infliximab versus adalimumab in the treatment of refractory inflammatory uveitis: a Multicenter Study from the French Uveitis Network. Arthritis Rheumatol. 2016;68(6):1522–30.

    Article  CAS  PubMed  Google Scholar 

  65. Deitch I, Amer R, Tomkins-Netzer O, et al. The effect of anti-tumor necrosis factor alpha agents on the outcome in pediatric uveitis of diverse etiologies. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):801–8.

    Article  CAS  PubMed  Google Scholar 

  66. Fabiani C, Vitale A, Rigante D, et al. Comparative efficacy between adalimumab and infliximab in the treatment of non-infectious intermediate uveitis, posterior uveitis, and panuveitis: a retrospective observational study of 107 patients. Clin Rheumatol. 2019;38:407–15.

    Article  PubMed  Google Scholar 

  67. Sepah YJ, Sadiq MA, Chu DS, et al. Primary (month-6) outcomes of the STOP-uveitis study: evaluating the safety, tolerability, and efficacy of tocilizumab in patients with noninfectious uveitis. Am J Ophthalmol. 2017;183:71–80.

    Article  CAS  PubMed  Google Scholar 

  68. Tappeiner C, Mesquida M, Adan A, et al. Evidence for tocilizumab as a treatment option in refractory uveitis associated with juvenile idiopathic arthritis. J Rheumatol. 2016;43(12):2183–8.

    Article  CAS  PubMed  Google Scholar 

  69. Atienza-Mateo B, Calvo-Rio V, Beltran E, et al. Anti-interleukin 6 receptor tocilizumab in refractory uveitis associated with Behcet’s disease: multicentre retrospective study. Rheumatology (Oxford). 2018;57(5):856–64.

    Article  CAS  Google Scholar 

  70. Calvo-Rio V, de la Hera D, Beltran-Catalan E, et al. Tocilizumab in uveitis refractory to other biologic drugs: a study of 3 cases and a literature review. Clin Exp Rheumatol. 2014;32(4 Suppl 84):S54–7.

    PubMed  Google Scholar 

  71. Heissigerova J, Callanan D, de Smet MD, et al. Efficacy and safety of sarilumab for noninfectious uveitis of posterior segment: outcomes from the phase 2 SATURN trial. Ophthalmology. 2019;126:428–37.

    Article  PubMed  Google Scholar 

  72. Dick AD, Tugal-Tutkun I, Foster S, et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 2013;120(4):777–87.

    Article  PubMed  Google Scholar 

  73. Letko E, Yeh S, Foster CS, et al. Efficacy and safety of intravenous secukinumab in noninfectious uveitis requiring steroid-sparing immunosuppressive therapy. Ophthalmology. 2015;122(5):939–48.

    Article  PubMed  Google Scholar 

  74. Sharief LAT, Lightman S, Tomkins-Netzer O. Using local therapy to control noninfectious uveitis. Ophthalmology. 2018;125(3):329–31.

    Article  PubMed  Google Scholar 

  75. Tomkins-Netzer O, Lightman S, Drye L, et al. Outcome of treatment of uveitic macular edema: the multicenter uveitis steroid treatment trial 2-year results. Ophthalmology. 2015;122(11):2351–9.

    Article  PubMed  Google Scholar 

  76. Kok H, Lau C, Maycock N, et al. Outcome of intravitreal triamcinolone in uveitis. Ophthalmology. 2005;112(11):1916 e1–7.

    Article  Google Scholar 

  77. Sallam A, Taylor SR, Habot-Wilner Z, et al. Repeat intravitreal triamcinolone acetonide injections in uveitic macular oedema. Acta Ophthalmol. 2012;90:e323–5.

    Article  PubMed  Google Scholar 

  78. Lowder C, Belfort R Jr, Lightman S, et al. Dexamethasone intravitreal implant for noninfectious intermediate or posterior uveitis. Arch Ophthalmol. 2011;129(5):545–53.

    Article  PubMed  Google Scholar 

  79. Writing Committee for the Multicenter Uveitis Steroid Treatment T, Follow-up Study Research G, Kempen JH, et al. Association between long-lasting intravitreous fluocinolone acetonide implant vs systemic anti-inflammatory therapy and visual acuity at 7 years among patients with intermediate, posterior, or panuveitis. JAMA. 2017;317(19):1993–2005.

    Article  CAS  Google Scholar 

  80. Kempen JH, Altaweel MM, Holbrook JT, et al. Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: the multicenter uveitis steroid treatment trial. Ophthalmology. 2011;118(10):1916–26.

    Article  PubMed  Google Scholar 

  81. Sen HN, Abreu FM, Louis TA, et al. Cataract surgery outcomes in uveitis: the multicenter uveitis steroid treatment trial. Ophthalmology. 2016;123(1):183–90.

    Article  PubMed  Google Scholar 

  82. Jaffe GJ, Foster S, Pavesio C, et al. Effect of an injectable fluocinolone acetonide insert on recurrence rates in noninfectious uveitis affecting the posterior segment: 12-month results. Ophthalmology. 2019;126:601–10.

    Article  PubMed  Google Scholar 

  83. Multicenter Uveitis Steroid Treatment Trial Research Group, Thorne JE, et al. Periocular triamcinolone vs. intravitreal triamcinolone vs. intravitreal dexamethasone implant for the treatment of uveitic macular edema: the periocular vs. intravitreal corticosteroids for uveitic macular edema (POINT) trial. Ophthalmology. 2019;126:283–95.

    Article  Google Scholar 

  84. Taylor A, Sheng KC, Herrero LJ, et al. Methotrexate treatment causes early onset of disease in a mouse model of Ross River virus-induced inflammatory disease through increased monocyte production. PLoS One. 2013;8(8):e71146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Julian K, Langner-Wegscheider BJ, Haas A, et al. Intravitreal methotrexate in the management of presumed tuberculous serpiginous-like choroiditis. Retina. 2013;33(9):1943–8.

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen QD, Merrill PT, Clark WL, et al. Intravitreal sirolimus for noninfectious uveitis: a phase III Sirolimus Study Assessing Double-masKed Uveitis TReAtment (SAKURA). Ophthalmology. 2016;123(11):2413–23.

    Article  PubMed  Google Scholar 

  87. Shanmuganathan VA, Casely EM, Raj D, et al. The efficacy of sirolimus in the treatment of patients with refractory uveitis. Br J Ophthalmol. 2005;89(6):666–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nguyen QD, Sadiq MA, Soliman MK, et al. The effect of different dosing schedules of intravitreal Sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, in the treatment of non-infectious uveitis (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc. 2016;114:T3.

    PubMed  PubMed Central  Google Scholar 

  89. Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, Bevacizumab, or Ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123(6):1351–9.

    Article  PubMed  Google Scholar 

  90. Ho M, Liu DT, Lam DS, Jonas JB. Retinal vein occlusions, from basics to the latest treatment. Retina. 2016;36(3):432–48.

    Article  CAS  PubMed  Google Scholar 

  91. Staurenghi G, Lai TYY, Mitchell P, et al. Efficacy and safety of Ranibizumab 0.5 mg for the treatment of macular edema resulting from uncommon causes: twelve-month findings from PROMETHEUS. Ophthalmology. 2018;125(6):850–62.

    Article  PubMed  Google Scholar 

  92. Lasave AF, Zeballos DG, El-Haig WM, et al. Short-term results of a single intravitreal bevacizumab (avastin) injection versus a single intravitreal triamcinolone acetonide (kenacort) injection for the management of refractory noninfectious uveitic cystoid macular edema. Ocular immunology and inflammation. 2009;17:423–30.

    Article  CAS  PubMed  Google Scholar 

  93. Kharel Sitaula R, Janani MK, Madhavan HN, et al. Outcome of polymerase chain reaction (PCR) analysis in 100 suspected cases of infectious uveitis. J Ophthalmic Inflamm Infect. 2018;8(1):2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Majumder PD, Sudharshan S, Biswas J. Laboratory support in the diagnosis of uveitis. Indian J Ophthalmol. 2013;61(6):269–76.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sandhu HS, Hajrasouliha A, Kaplan HJ, et al. Diagnostic utility of quantitative polymerase chain reaction versus culture in endophthalmitis and uveitis. Ocul Immunol Inflamm. 2019;27:578–82.

    Article  PubMed  CAS  Google Scholar 

  96. Thompson PP, Kowalski RP. A 13-year retrospective review of polymerase chain reaction testing for infectious agents from ocular samples. Ophthalmology. 2011;118(7):1449–53.

    PubMed  Google Scholar 

  97. Bispo PJM, Davoudi S, Sahm ML, et al. Rapid detection and identification of uveitis pathogens by qualitative multiplex real-time PCR. Invest Ophthalmol Vis Sci. 2018;59(1):582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schoenberger SD, Kim SJ, Thorne JE, et al. Diagnosis and treatment of acute retinal necrosis: a report by the American Academy of Ophthalmology. Ophthalmology. 2017;124(3):382–92.

    Article  PubMed  Google Scholar 

  99. Hong BK, Lee CS, Van Gelder RN, Garg SJ. Emerging techniques for pathogen discovery in endophthalmitis. Curr Opin Ophthalmol. 2015;26(3):221–5.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sugita S, Shimizu N, Watanabe K, et al. Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis. Br J Ophthalmol. 2008;92(7):928–32.

    Article  CAS  PubMed  Google Scholar 

  101. Neumann R, Barequet D, Rosenblatt A, et al. Herpetic anterior uveitis—analysis of presumed and pcr proven cases. Ocul Immunol Inflamm. 2019;27:211–8.

    Article  CAS  PubMed  Google Scholar 

  102. Butler NJ, Moradi A, Salek SS, et al. Acute retinal necrosis: presenting characteristics and clinical outcomes in a cohort of polymerase chain reaction-positive patients. Am J Ophthalmol. 2017;179:179–89.

    Article  PubMed  Google Scholar 

  103. Liu T, Jain A, Fung M, et al. Valacyclovir as initial treatment for acute retinal necrosis: a pharmacokinetic modeling and simulation study. Curr Eye Res. 2017;42(7):1035–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sims JL, Yeoh J, Stawell RJ. Acute retinal necrosis: a case series with clinical features and treatment outcomes. Clin Exp Ophthalmol. 2009;37(5):473–7.

    Article  PubMed  Google Scholar 

  105. Lau CH, Missotten T, Salzmann J, et al. Acute retinal necrosis features, management, and outcomes. Ophthalmology. 2007;114(4):756–62.

    Article  PubMed  Google Scholar 

  106. Baltinas J, Lightman S, Tomkins-Netzer O. Comparing treatment of acute retinal necrosis with either oral valacyclovir or intravenous acyclovir. Am J Ophthalmol. 2018;188:173–80.

    Article  CAS  PubMed  Google Scholar 

  107. Tibbetts MD, Shah CP, Young LH, et al. Treatment of acute retinal necrosis. Ophthalmology. 2010;117(4):818–24.

    Article  PubMed  Google Scholar 

  108. Yeh S, Suhler EB, Smith JR, et al. Combination systemic and intravitreal antiviral therapy in the management of acute retinal necrosis syndrome. Ophthalmic Surg Lasers Imaging Retina. 2014;45(5):399–407.

    Article  PubMed  Google Scholar 

  109. Wong R, Pavesio CE, Laidlaw DA, et al. Acute retinal necrosis: the effects of intravitreal foscarnet and virus type on outcome. Ophthalmology. 2010;117(3):556–60.

    Article  PubMed  Google Scholar 

  110. WHO Global Tuberculosis Report. 2015. World Health Organization; 2015.

    Google Scholar 

  111. Dyrhol-Riise AM, Gran G, Wentzel-Larsen T, et al. Diagnosis and follow-up of treatment of latent tuberculosis; the utility of the QuantiFERON-TB Gold In-tube assay in outpatients from a tuberculosis low-endemic country. BMC Infect Dis. 2010;10:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Nazari Khanamiri H, Rao NA. Serpiginous choroiditis and infectious multifocal serpiginoid choroiditis. Surv Ophthalmol. 2013;58(3):203–32.

    Article  PubMed  Google Scholar 

  113. Agrawal R, Gunasekeran DV, Agarwal A, et al. The Collaborative Ocular Tuberculosis Study (COTS)-1: a multinational description of the spectrum of choroidal involvement in 245 patients with tubercular uveitis. Ocul Immunol Inflamm. 2019;29:1–11.

    Article  Google Scholar 

  114. La Distia Nora R, van Velthoven ME, Ten Dam-van Loon NH, et al. Clinical manifestations of patients with intraocular inflammation and positive QuantiFERON-TB gold in-tube test in a country nonendemic for tuberculosis. Am J Ophthalmol. 2014;157(4):754–61.

    Article  PubMed  Google Scholar 

  115. Bansal R, Gupta A, Gupta V, et al. Role of anti-tubercular therapy in uveitis with latent/manifest tuberculosis. Am J Ophthalmol. 2008;146(5):772–9.

    Article  CAS  PubMed  Google Scholar 

  116. Ang M, Hedayatfar A, Wong W, et al. Duration of anti-tubercular therapy in uveitis associated with latent tuberculosis: a case-control study. Br J Ophthalmol. 2012;96(3):332–6.

    Article  PubMed  Google Scholar 

  117. Sanghvi C, Bell C, Woodhead M, et al. Presumed tuberculous uveitis: diagnosis, management, and outcome. Eye (Lond). 2011;25(4):475–80.

    Article  CAS  Google Scholar 

  118. Tomkins-Netzer O, Leong BCS, Zhang X, et al. Effect of antituberculous therapy on uveitis associated with latent tuberculosis. Am J Ophthalmol. 2018;190:164–70.

    Article  PubMed  Google Scholar 

  119. Liu Q, Wang ZD, Huang SY, et al. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors. 2015;8:292.

    Google Scholar 

  120. Villard O, Cimon B, L'Ollivier C, et al. Serological diagnosis of Toxoplasma gondii infection: recommendations from the French National Reference Center for Toxoplasmosis. Diagn Microbiol Infect Dis. 2016;84(1):22–33.

    Google Scholar 

  121. Bosch-Driessen LE, Berendschot TT, Ongkosuwito JV, et al. Ocular toxoplasmosis: clinical features and prognosis of 154 patients. Ophthalmology. 2002;109(5):869–78.

    Article  PubMed  Google Scholar 

  122. Jasper S, Vedula SS, John SS, et al. Corticosteroids as adjuvant therapy for ocular toxoplasmosis. Cochrane Database Syst Rev. 2017;(1):CD007417.

    Google Scholar 

  123. Zhang Y, Lin X, Lu F. Current treatment of ocular toxoplasmosis in immunocompetent patients: a network meta-analysis. Acta Trop. 2018;185:52–62.

    Article  PubMed  Google Scholar 

  124. Bosch-Driessen LH, Verbraak FD, Suttorp-Schulten MS, et al. A prospective, randomized trial of pyrimethamine and azithromycin vs pyrimethamine and sulfadiazine for the treatment of ocular toxoplasmosis. Am J Ophthalmol. 2002;134(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  125. Kim SJ, Scott IU, Brown GC, et al. Interventions for toxoplasma retinochoroiditis: a report by the American Academy of Ophthalmology. Ophthalmology. 2013;120(2):371–8.

    Article  PubMed  Google Scholar 

  126. Silveira C, Belfort R Jr, Muccioli C, et al. The effect of long-term intermittent trimethoprim/sulfamethoxazole treatment on recurrences of toxoplasmic retinochoroiditis. Am J Ophthalmol. 2002;134(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  127. Pradhan E, Bhandari S, Gilbert RE, et al. Antibiotics versus no treatment for toxoplasma retinochoroiditis. Cochrane Database Syst Rev. 2016;(5):CD002218.

    Google Scholar 

  128. Borkowski PK, Brydak-Godowska J, Basiak W, et al. The impact of short-term, intensive antifolate treatment (with pyrimethamine and sulfadoxine) and antibiotics followed by long-term, secondary antifolate prophylaxis on the rate of toxoplasmic retinochoroiditis recurrence. PLoS Negl Trop Dis. 2016;10(8):e0004892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Felix JP, Lira RP, Zacchia RS, et al. Trimethoprim-sulfamethoxazole versus placebo to reduce the risk of recurrences of Toxoplasma gondii retinochoroiditis: randomized controlled clinical trial. Am J Ophthalmol. 2014;157(4):762–6 e1.

    Article  PubMed  CAS  Google Scholar 

  130. Fernandes Felix JP, Cavalcanti Lira RP, Cosimo AB, et al. Trimethoprim-sulfamethoxazole versus placebo in reducing the risk of toxoplasmic retinochoroiditis recurrences: a three-year follow-up. Am J Ophthalmol. 2016;170:176–82.

    Article  CAS  PubMed  Google Scholar 

  131. Reich M, Mackensen F. Ocular toxoplasmosis: background and evidence for an antibiotic prophylaxis. Curr Opin Ophthalmol. 2015;26(6):498–505.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Tomkins-Netzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, X.N. et al. (2020). Recent Advances in Uveitis. In: Grzybowski, A. (eds) Current Concepts in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-25389-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25389-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25388-2

  • Online ISBN: 978-3-030-25389-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics