Cities—Where People and Ecology Meet

  • Francini van StadenEmail author
Part of the GeoJournal Library book series (GEJL)


Urban ecology as a discipline has progressed far beyond only scientific approaches and is now framed by understandings that interweave social, political, philosophical, natural and management sciences. Recent advances include urban ecology as part of complex social-ecological systems with active roles in achieving global sustainable development goals and city resilience and inquiries into socio-political processes that drive unequal urbanisation. Urbanisation is one of the key features of our current and future world. The consequences of a world population that is fast turning predominantly urban alongside unprecedented loss of natural ecosystems—humanity’s supporting pillars—are not yet fully understood. Moreover, the dynamics between intensifying urban development, socio-political patterns and ecosystem functioning also remain uncertain. Despite these changes, urban spaces can potentially contribute to ecological richness.


Urban ecology Environmental change Social-ecological systems Sustainable development Resilience 


  1. Alberti, M. (2008). Advances in urban ecology integrating humans and ecological processes in urban ecosystems (No. 574.5268 A4).Google Scholar
  2. Alberti, M. (2010). Maintaining ecological integrity and sustaining ecosystem function in urban areas. Current Opinion in Environmental Sustainability, 2(3), 178–184.CrossRefGoogle Scholar
  3. Anderson, P. M. L., Avlonitis, G., & Ernstson, H. (2014). Ecological outcomes of civic and expert-led urban greening projects using indigenous plant species in Cape Town, South Africa. Landscape and Urban Planning, 127, 104–113.CrossRefGoogle Scholar
  4. Barker, G. (2000). Ecological recombination in urban areas. In The urban forum/English nature. Peterborough.Google Scholar
  5. Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: From individuals to ecosystems. Boston: Blackwell Publishing.Google Scholar
  6. Benedict, M. A., & McMahon, E. T. (2002). Green infrastructure: smart conservation for the 21st century. Renewable Resources Journal, 20, 12–17.Google Scholar
  7. Bloomberg, M. (2015). City century: Why municipalities are the key to fighting climate change. Foreign Affairs, 94, 116.Google Scholar
  8. Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29(2), 293–301.CrossRefGoogle Scholar
  9. Brown, B. C. (2012). Essentials of applying complexity thinking for sustainability leadership. Integral Sustainability Center, Resource Tool No. 12, 1–9.Google Scholar
  10. Carley, M. (1999). Neighbourhoods-building blocks of national sustainability. Town and country planning-London-town and country planning association, 68, 58–60.Google Scholar
  11. Caspersen, O. H., Konijnendijk, C. C., & Olafsson, A. S. (2006). Green space planning and land use: An assessment of urban regional and green structure planning in Greater Copenhagen. Geografisk Tidsskrift-Danish Journal of Geography, 106(2), 7–20.CrossRefGoogle Scholar
  12. Cilliers, S. S. (2010). Social aspects of urban biodiversity—An overview. In N. Müller, P. Werner, & J. Kelcey (Eds.), Urban biodiversity and design—Implementing the convention on biological diversity in towns and cities (pp. 81–100).Google Scholar
  13. Cilliers, S., Du Toit, M., Cilliers, J., Drewes, E., & Retief, F. (2014). Sustainable urban landscapes: South African perspectives on transdisciplinary possibilities. Landscape and Urban Planning, 125, 260–270.CrossRefGoogle Scholar
  14. Cilliers, S. S., Müller, N., & Drewes, E. (2004). Overview on urban nature conservation: Situation in the western-grassland biome of South Africa. Urban Forestry & Urban Greening, 3(1), 49–62.CrossRefGoogle Scholar
  15. Cilliers, S. S., & Siebert, S. J. (2012). Urban ecology in Cape Town: South African comparisons and reflections. Ecology and Society, 17(3).Google Scholar
  16. Cilliers, E. J., Timmermans, W., van den Goorbergh, F., & Slijkhuis, J. S. A. (2015). Designing public spaces through the lively planning integrative perspective. Environment, Development and Sustainability, 17(6), 1367–1380.CrossRefGoogle Scholar
  17. Costanza, R., & Folke, C. (1997). Valuing ecosystem services with efficiency, fairness and sustainability as goals. In Nature’s services: Societal dependence on natural ecosystems (pp. 49–70).Google Scholar
  18. Davies, R. J. (1981). The spatial formation of the South African city. GeoJournal, 2(2), 59–72.Google Scholar
  19. Department of Cooperative Governance and Traditional Affairs (CoGTA). (2016). Integrated urban development framework. Pretoria: Department of Cooperative Governance and Traditional Affairs.Google Scholar
  20. Department of Environmental Affairs (DEA). (2012). 2nd South Africa environment outlook report. A report on the state of the environment. Department of Environmental Affairs, Pretoria, 60 pp.Google Scholar
  21. Downton, P. F. (2008). Ecopolis: Architecture and cities for a changing climate (Vol. 1). Springer Science & Business Media.Google Scholar
  22. Du Toit, M. J. (2015). An urban ecological synthesis of socio-ecological systems dynamics in Potchefstroom, South Africa (Doctoral dissertation).Google Scholar
  23. Ernstson, H., & Sörlin, S. (2013). Ecosystem services as technology of globalization: On articulating values in urban nature. Ecological Economics, 86, 274–284.CrossRefGoogle Scholar
  24. Ernstson, H., & Swyngedouw, E. (2015, September). Rupturing the anthro-obscene! the political promises of planetary & uneven urban ecologies. Position Paper. Conference at Teater Reflex.Google Scholar
  25. Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., & Walker, B. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. AMBIO: A Journal of the Human Environment, 31(5), 437–441.Google Scholar
  26. Forman, R. T., & Godron, M. (1986). Landscape ecology. New York, NY: Wiley.Google Scholar
  27. Goldreich, Y. (1970). Computation of the magnitude of Johannesburg’s heat island. Notos, 19, 95–106.Google Scholar
  28. Goodness, J., & Anderson, P. M. (2013). Local assessment of Cape Town: navigating the management complexities of urbanization, biodiversity, and ecosystem services in the Cape Floristic Region. In Urbanization, biodiversity and ecosystem services: Challenges and opportunities (pp. 461–484). Dordrecht: Springer.Google Scholar
  29. Graham, M., & Ernstson, H. (2012). Comanagement at the fringes: Examining stakeholder perspectives at Macassar Dunes, Cape Town, South Africa—at the intersection of high biodiversity, urban poverty, and inequality. Ecology and Society, 17(3).Google Scholar
  30. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864), 756–760.Google Scholar
  31. Güneralp, B., & Seto, K. C. (2013). Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environmental Research Letters, 8(1), 014025.Google Scholar
  32. Haagner, A. C. (1902). XXXV: More ornithological notes from the transvaal. Ibis, 44(4), 569–581.CrossRefGoogle Scholar
  33. Habitat, United Nations (UN). (2016). World cities report 2016. Nairobi, Kenya: UN Habitat.Google Scholar
  34. Head, B. W. (2008). Wicked problems in public policy. Public Policy, 3(2), 101.Google Scholar
  35. Hoffman, T., & O’Riain, M. (2012). Monkey management: Using spatial ecology to understand the extent and severity of human–baboon conflict in the Cape Peninsula, South Africa. Ecology and Society, 17(3), 234–247.CrossRefGoogle Scholar
  36. Hoornweg, D., Freire, M., Lee, M. J., Bhada-Tata, P., & Yuen, B. (2011). Cities and climate change: Responding to an urgent agenda. New York: The World Bank.CrossRefGoogle Scholar
  37. Hope, D., Gries, C., Zhu, W., Fagan, W. F., Redman, C. L., Grimm, N. B., …, & Kinzig, A. (2008). Socioeconomics drive urban plant diversity. Urban Ecology, 339–347.Google Scholar
  38. Jabareen, Y. (2013). Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities, 31, 220–229.CrossRefGoogle Scholar
  39. Kaufmann, R. K., Seto, K. C., Schneider, A., Liu, Z., Zhou, L., & Wang, W. (2007). Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. Journal of Climate, 20(10), 2299–2306.CrossRefGoogle Scholar
  40. Kuruneri-Chitepo, C., & Shackleton, C. M. (2011). The distribution, abundance and composition of street trees in selected towns of the Eastern Cape, South Africa. Urban Forestry & Urban Greening, 10(3), 247–254.CrossRefGoogle Scholar
  41. Lau, C. (2018). Nature-based solutions. Planning, 84(8), 34.Google Scholar
  42. Lawhon, M., Ernstson, H., & Silver, J. (2014). Provincializing urban political ecology: Towards a situated UPE through African urbanism. Antipode, 46(2), 497–516.Google Scholar
  43. Leong, M., Dunn, R. R., & Trautwein, M. D. (2018). Biodiversity and socioeconomics in the city: A review of the luxury effect. Biology Letters, 14, 180–182.CrossRefGoogle Scholar
  44. Likens, G. E., Kinne, O., & Williams, W. D. (1992). The ecosystem approach: Its use and abuse. Washington, DC: Ecology Institute.Google Scholar
  45. Loftus, A. (2012). Everyday environmentalism: Creating an urban political ecology. Minneapolis: University of Minnesota Press.CrossRefGoogle Scholar
  46. Louw, W. J., & Meyer, J. A. (1965). Near-surface nocturnal winter temperatures in Pretoria. Notos, 14, 49–65.Google Scholar
  47. Macchi, S., & Tiepolo, M. (2014). Climate change vulnerability in Southern African cities. In Springer climate. Switzerland: Springer International Publishing.Google Scholar
  48. Marsh, G. P. (1864). Man and Nature; or. Physical geography as modified by human action (Vol. 35, pp. 6–14).Google Scholar
  49. Marzluff, J. M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., & ZumBrunnen, C. (2008). An international perspective on the interaction between humans and nature. New York, NY: Springer Books Ltd.Google Scholar
  50. McDonnell, M. J., & Niemelä, J. (2011). The history of urban ecology. Urban Ecology, 9, 34–49.Google Scholar
  51. McDonnell, M. J., & Pickett, S. T. (1990). Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology, 71(4), 1232–1237.CrossRefGoogle Scholar
  52. McDonnell, M. J., Pickett, S. T., & Pouyat, R. V. (1993). The application of the ecological gradient paradigm to the study of urban effects. In G. Likens & W. Cronon (Eds.), Humans as components of ecosystems. New York, NY: Springer.Google Scholar
  53. McGrath, B., & Shane, D. G. (2012). Metropolis, megalopolis and metacity. In The Sage handbook of architectural theory. London: Sage.Google Scholar
  54. McIntyre, N. E., Knowles-Yánez, K., & Hope, D. (2008). Urban ecology as an interdisciplinary field: Differences in the use of “urban” between the social and natural sciences. Urban Ecology, 49–65.Google Scholar
  55. McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127(3), 247–260.CrossRefGoogle Scholar
  56. McKinney, M. L. (2008). Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11(2), 161–176.CrossRefGoogle Scholar
  57. McLean, P., Gallien, L., Wilson, J. R., Gaertner, M., & Richardson, D. M. (2017). Small urban centres as launching sites for plant invasions in natural areas: Insights from South Africa. Biological Invasions, 19(12), 3541–3555.CrossRefGoogle Scholar
  58. McPhearson, T., Pickett, S. T., Grimm, N. B., Niemelä, J., Alberti, M., Elmqvist, T., … & Qureshi, S. (2016). Advancing urban ecology toward a science of cities. BioScience, 66(3), 198–212.Google Scholar
  59. Folke, C. Jansson, Å. Rockström, J. Olsson, P. Carpenter, S. R. Chapin, F. S., & Westley, F. (2011). Reconnecting to the biosphere. AMBIO: A Journal of the Human Environment, 40(7), 719–738.Google Scholar
  60. Millennium Ecosystem Assessment. (2005). Ecosystem and human well-being: Biodiversity synthesis. Washington, DC: World Resources Institute.Google Scholar
  61. Niemelä, J., Breuste, J. H., Guntenspergen, G., McIntyre, N. E., Elmqvist, T., & James, P. (Eds.). (2011). Urban ecology: Patterns, processes, and applications. Oxford: Oxford University Press.Google Scholar
  62. Niemelä, J., Saarela, S. R., Söderman, T., Kopperoinen, L., Yli-Pelkonen, V., Väre, S., & Kotze, D. J. (2010). Using the ecosystem services approach for better planning and conservation of urban green spaces: A Finland case study. Biodiversity and Conservation, 19(11), 3225–3243.Google Scholar
  63. Norberg, J., & Cumming, G. (2008). Complexity theory for a sustainable future. Columbia University Press.Google Scholar
  64. OECD. Publishing. (2015). The metropolitan century: Understanding urbanisation and its consequences. Paris: OECD Publishing.Google Scholar
  65. Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., … & Dubash, N. K. (2014). In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.Google Scholar
  66. Padoch, C., McDonnell, M.J., & Pickett, S.T.A. (1993). Part II: A human ecologist’s perspective. In G. Likens and M. Cronon (eds.) Humans as components of ecosystems: The ecology of subtle human effects and populated areas. London: Springer.Google Scholar
  67. Perine, C., & Keuck, H. (2018). Building urban resilience to climate change: A review of South Africa. Climate Change Adaptation, Thought Leadership and Assessments (ATLAS). Retrieved from
  68. Pickett, S. T., & Cadenasso, M. L. (2006). Advancing urban ecological studies: Frameworks, concepts, and results from the Baltimore Ecosystem Study. Austral Ecology, 31(2), 114–125.Google Scholar
  69. Pickett, S. T. A., Cadenasso, M. L., Rosi-Marshall, E. J., Belt, K. T., Groffman, P. M., Grove, J. M., … & Swan, C. M. (2017). Dynamic heterogeneity: A framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosystems, 20, 1–14.Google Scholar
  70. Rees, W. E. (1997). Urban ecosystems: The human dimension. Urban Ecosystems, 1, 63–75.CrossRefGoogle Scholar
  71. Rogerson, C. M. (1993). Urban agriculture in South Africa: Scope, issues and potential. GeoJournal, 30, 21–28Google Scholar
  72. Savard, J. P. L., Clergeau, P., & Mennechez, G. (2000). Biodiversity concepts and urban ecosystems. Landscape and Urban Planning, 48(3–4), 131–142.Google Scholar
  73. Shackleton, C. M., Blair, A., De Lacy, P., Kaoma, H., Mugwagwa, N., Dalu, M. T., & Walton, W. (2018). How important is green infrastructure in small and medium-sized towns? Lessons from South Africa. Landscape and Urban Planning, 180, 273–281.Google Scholar
  74. Silva, C. N. (2013). Urban ecology. Salem: Salem Press Encyclopaedia.Google Scholar
  75. Simon, D. (2013). Climate and environmental change and the potential for greening African cities. Local Economy, 28(2), 203–217.CrossRefGoogle Scholar
  76. South African Cities Network (SACN). 2011. Towards Resilient Cities. State of South African Cities Report.Google Scholar
  77. South African Cities Network (SACN). 2016. State of South African Cities Report.Google Scholar
  78. Spash, C. L. (2012). New foundations for ecological economics. Ecological Economics, 77, 36–47.CrossRefGoogle Scholar
  79. Swyngedouw, E., & Ernstson, H. (2018). Interrupting the anthropo-obScene: Immuno-biopolitics and depoliticizing ontologies in the anthropocene. Theory, Culture & Society, 35(6), 3–30.Google Scholar
  80. Tait, C. J., Daniels, C. B., & Hill, R. S. (2005). Changes in species assemblages within the Adelaide metropolitan area, Australia, 1836–2002. Ecological Applications, 15(1), 346–359.Google Scholar
  81. Taylor, L., & Hochuli, D. F. (2017). Defining greenspace: Multiple uses across multiple disciplines. Landscape and Urban Planning, 158, 25–38.Google Scholar
  82. Tyson P. (1968). Velocity fluctuations in the mountain wind. Journal of the Atmospheric Sciences, 25, 381–384.CrossRefGoogle Scholar
  83. Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167–178.Google Scholar
  84. United Nations (UN). (2012). World population prospects: The 2010 revision, volume I-comprehensive tables. New York: United Nations.Google Scholar
  85. United Nations (UN). (2015). United Nations sustainable development goals. New York: United Nations.Google Scholar
  86. United Nations (UN). (2017). New Urban Agenda. A/RES/71/256.Google Scholar
  87. United Nations Environment Programme (UNEP). (2013). Urban resource flows and the governance of infrastructure transitions. In A report of the working group on cities of the international resource panel.Google Scholar
  88. United Nations Framework Convention on Climate Change (UNFCCC). (1992). United Nations framework convention on climate change.Google Scholar
  89. Van der Walt, L., Cilliers, S. S., Du Toit, M. J., & Kellner, K. (2015). Conservation of fragmented grasslands as part of the urban green infrastructure: How important are species diversity, functional diversity and landscape functionality? Urban Ecosystems, 18(1), 87–113.Google Scholar
  90. von Döhren, P., & Haase, D. (2015). Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecological Indicators, 52, 490–497.Google Scholar
  91. Wackernagel, M., & Rees, W. (1998). Our ecological footprint: Reducing human impact on the earth (Vol. 9). New York: New Society Publishers.Google Scholar
  92. Williams, V. L., Balkwill, K., & Witkowski, E. T. F. (1997). Muthi traders on the Witwatersrand, South Africa-an urban mosaic. South African Journal of Botany, 63(6), 378–381.Google Scholar
  93. Wong, T. H., & Brown, R. R. (2009). The water sensitive city: Principles for practice. Water Science and Technology, 60(3), 673–682.Google Scholar
  94. Wood, P. A., & Samways, M. J. (1991). Landscape element pattern and continuity of butterfly flight paths in an ecologically landscaped botanic garden, Natal, South Africa. Biological Conservation, 58(2), 149–166.Google Scholar
  95. Wu, J. (2014). Urban ecology and sustainability: The state-of-the-science and future directions. Landscape and Urban Planning, 125, 209–221.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Environmental Affairs and Development Planning, Western Cape GovernmentCape TownSouth Africa

Personalised recommendations