Skip to main content

Variations on the Collapsing Lemma

  • Chapter
  • First Online:
Graham Priest on Dialetheism and Paraconsistency

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 18))

  • 447 Accesses

Abstract

Graham Priest has frequently employed a construction in which a classical first-order model \(\mathfrak {A}\) may be collapsed into a three-valued model \(\mathfrak {A}^{\sim }\) suitable for interpretations in Priest’s logic of paradox (\(\mathsf {LP}\)). The source of this construction’s utility is Priest’s Collapsing Lemma, which guarantees that a formula true in the model \(\mathfrak {A}\) will continue to be true in \(\mathfrak {A}^{\sim }\) (although the formula may also be false in \(\mathfrak {A}^{\sim }\)). In light of the utility and elegance of the Collapsing Lemma, extending variations of the lemma to other deductive calculi becomes very attractive. The aim of this paper is to map out some of the frontiers of the Collapsing Lemma by describing the types of expansions or revisions to \(\mathsf {LP}\) for which the Collapsing Lemma continues to hold and a number of cases in which the lemma cannot be salvaged. Among what is shown is that the lemma holds for a strictly more expressive form of \(\mathsf {LP}\) including nullary truth and falsity constants, that any conditional connective that can be added to \(\mathsf {LP}\) without inhibiting the lemma must be theoremhood-preserving, and that the Collapsing Lemma extends to the paraconsistent weak Kleene logic \(\mathsf {PWK}\) as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I appreciate the input of a referee reminding me to also credit Asenjo here.

  2. 2.

    Note that D’Ottaviano uses “\(\nabla \)” for the “possibility connective” and reserves “\(\Delta \)” for another use, defining it as \(\lnot \nabla \lnot \).

References

  • Åqvist, L. (1962). Reflections on the logic of nonsense. Theoria, 28(2), 138–157.

    Article  Google Scholar 

  • Asenjo, F. G. (1966). A calculus of antinomies. Notre Dame Journal of Formal Logic, 7(1), 103–105.

    Article  Google Scholar 

  • Asenjo, F. G., & Tamburino, J. (1975). Logic of antinomies. Notre Dame Journal of Formal Logic, 16(1), 17–44.

    Article  Google Scholar 

  • Baaz, M. (1996). Infinite-valued Gödel logics with \(0\)-\(1\)-projections and relativizations. In P. Hájek (Ed.), Gödel ’96: Logical foundations of mathematics, computer science and physics (pp. 23–33). Berlin: Springer.

    Chapter  Google Scholar 

  • Bochvar, D. A. (1938). On a three-valued logical calculus and its application to the analysis of contradictions. Matematicheskii Sbornik, 4(2), 287–308.

    Google Scholar 

  • Bochvar, D. A. (1981). On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus. History and Philosophy of Logic, 2(1–2), 87–112.

    Article  Google Scholar 

  • Carnielli, W., Coniglio, M. E., & Marcos, J. (2007). Logics of formal inconsistency. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 14, pp. 15–107). The Netherlands: Springer.

    Google Scholar 

  • Carnielli, W., Marcos, J., & de Amo, S. (2000). Formal inconsistency and evolutionary databases. Logic and Logical Philosophy, 8, 115–152.

    Article  Google Scholar 

  • Ciuni, R. (2015). Conjunction in paraconsistent weak Kleene logic. In P. Arazim & M. Dank (Eds.), The logica yearbook 2014 (pp. 61–76). London: College Publications.

    Google Scholar 

  • Ciuni, R., & Carrara, M. (2016). Characterizing logical consequence in paraconsistent weak Kleene logic. In L. Felline, F. Paoli, & E. Rossanese (Eds.), New developments in logic and the philosophy of science. London: College Publications.

    Google Scholar 

  • da Costa, N. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15(4), 497–510.

    Article  Google Scholar 

  • De, M., & Omori, H. (2015). Classical negation and expansions of Belnap-Dunn logic. Studia Logica, 103(4), 825–851.

    Article  Google Scholar 

  • D’Ottaviano, I. (1985). The completeness and compactness of a three-valued first-order logic. Revista colombiana de matematicas, 19(1–2), 77–94.

    Google Scholar 

  • Dunn, J. M. (1979). A theorem in 3-valued model theory with connections to number theory, type theory, and relevant logic. Studia Logica, 38(2), 149–169.

    Article  Google Scholar 

  • Ferguson, T. M. (2012). Notes on the model theory of DeMorgan logics. Notre Dame Journal of Formal Logic, 53(1), 113–132.

    Article  Google Scholar 

  • Ferguson, T. M. (2014). On non-deterministic quantification. Logica Universalis, 8(2), 165–191.

    Article  Google Scholar 

  • Ferguson, T. M. (2017). Dunn-Priest quotients of many-valued structures. Notre Dame Journal of Formal Logic, 58(2), 221–239.

    Article  Google Scholar 

  • Fitting, M. (1994). Kleene’s three-valued logics and their children. Fundamenta Informaticae, 20(1–3), 113–131.

    Article  Google Scholar 

  • Halldén, S. (1949). The logic of nonsense. Lund: Lundequista Bokhandeln.

    Google Scholar 

  • Igarishi, R. (2015). Logic of paradox and falsity constant. Paper delivered at PhilLogMath 2015.

    Google Scholar 

  • Kleene, S. C. (1950). Introduction to metamathematics. Princeton, NJ: D. Van Nostrand.

    Google Scholar 

  • Kooi, B., & Tamminga, A. (2012). Completeness via correspondence for extensions of the logic of paradox. Review of Symbolic Logic, 5(4), 720–730.

    Article  Google Scholar 

  • Malinowski, G. (2002). Many-valued logic. In D. Jacquette (Ed.), A companion to philosophical logic (pp. 545–561). Oxford: Blackwell Publishing.

    Google Scholar 

  • Marcos, J. (2005). Nearly every modal logic is paranormal. Logique et Analyse, 48(189–192), 279–300.

    Google Scholar 

  • McCarthy, J. (1963). A basis for a mathematical theory of computation. In P. Braffort & D. Hirschberg (Eds.), Computer programming and formal systems (pp. 33–70). Amsterdam: North-Holland Publishing Company.

    Chapter  Google Scholar 

  • Omori, H. (2015). Remarks on naive set theory based on \(\sf LP\). Review of Symbolic Logic, 8(2), 279–295.

    Article  Google Scholar 

  • Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219–241.

    Article  Google Scholar 

  • Priest, G. (1991). Minimally inconsistent \(\sf LP\). Studia Logica, 50(2), 321–331.

    Article  Google Scholar 

  • Priest, G. (1994). Is arithmetic consistent? Mind, 103(411), 337–349.

    Article  Google Scholar 

  • Priest, G. (1997). Inconsistent models for arithmetic I, Finite models. Journal of Philosophical Logic, 26(2), 223–235.

    Article  Google Scholar 

  • Priest, G. (2000). Inconsistent models for arithmetic II, The general case. Journal of Symbolic Logic, 65(4), 1519–1529.

    Article  Google Scholar 

  • Priest, G. (2012). A note on the axiom of countability. Al-Mukhatabat, 1(1), 27–31.

    Google Scholar 

  • Priest, G. (2014). Plurivalent logics. Australasian Journal of Logic, 11(1), 2–13.

    Article  Google Scholar 

  • Rescher, N. (1969). Many-valued logic. New York: McGraw Hill.

    Google Scholar 

  • Sano, K., & Omori, Hitoshi. (2014). An expansion of first-order Belnap-Dunn logic. Logic Journal of the IGPL, 22(3), 458–481.

    Article  Google Scholar 

  • Tomova, N. (2012). A lattice of implicative extensions of regular Kleene’s logics. Reports on Mathematical Logic, 47, 173–182.

    Google Scholar 

  • Tomova, N. (2015a). Natural implication and modus ponens principle. Logical Investigations, 21(1), 138–143.

    Article  Google Scholar 

  • Tomova, N. (2015b). Erratum to: Natural implication and modus ponens principle. Logical Investigations, 21(2), 186–187.

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to the insightful and constructive remarks of three referees, whose input was of great help and is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Macaulay Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferguson, T.M. (2019). Variations on the Collapsing Lemma. In: Başkent, C., Ferguson, T. (eds) Graham Priest on Dialetheism and Paraconsistency. Outstanding Contributions to Logic, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-25365-3_13

Download citation

Publish with us

Policies and ethics