Skip to main content

Dry Eye Disease: A Modern History

  • Chapter
  • First Online:
Foundations of Corneal Disease

Abstract

One of the most common disorders of the ocular surface is dry eye disease (DED). A historical perspective of our understanding of DED can be captured in seven thematic areas. Structure and function of the components of the tear film and ocular surface and the lacrimal functional unit provide the basic information. The hallmarks of DED are tear instability and hyperosmolarity. The role of inflammation in DED and the neurobiological aspects of the ocular surface are important to understanding the vicious cycle of the disease. Recent advances in the diagnosis and treatment of DED provide novel appreciation of DED.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Roetth A. The dry eye. Acta XVI Concilium Ophthalmologicum (Britannia). Br Med Assoc London. 1950;1:456–64.

    Google Scholar 

  2. Thoft RA, Friend J. Biochemical transformation or regenerating ocular surface epithelium. Invest Oph Vis Sci. 1977;16:14–20.

    CAS  Google Scholar 

  3. Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial aintenance. Invest Ophthalmol Vis Sci. 1983;24:1442–3.

    CAS  PubMed  Google Scholar 

  4. Shapiro MS, Friend J, Thoft RA. Corneal re-epithelialization from the conjunctiva. Invest Ophthalmol Vis Sci. 1981;21(1 Pt 1):135–42.

    CAS  PubMed  Google Scholar 

  5. Kinoshita S, Kiorpes TC, Friend J, Thoft RA. Limbal epithelium in ocular surface wound healing. Invest Ophthalmol Vis Sci. 1982;24:1442–3.

    Google Scholar 

  6. Schirmer A, Galvn S, Sun TT. Differentiation-related expression of a major 64k corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103:49–62.

    Article  Google Scholar 

  7. Pellegrini G, De Luca M. Eyes on the prize: limbal stem cells and corneal restoration. Cell Stem Cell. 2014;15:121.

    Article  CAS  PubMed  Google Scholar 

  8. Gipson IK, Hori Y, Argüeso P. Character of ocular surface mucins and their alteration in dry eye disease. Ocul Surf. 2004;2:131–48.

    Article  PubMed  Google Scholar 

  9. Methodologies to diagnose and monitor dry eye disease: report of the diagnostic methodology subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:108–52.

    Google Scholar 

  10. Bron AJ, Argüeso P, Irkec M, Bright FV. Clinical staining of the ocular surface: Mechanism and interpretations. Prog Retin Eye Res. 2015;44:36–61.

    Article  CAS  PubMed  Google Scholar 

  11. Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea. 1998;17:584–9. Review

    Article  CAS  PubMed  Google Scholar 

  12. Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmol. 2017;124(11S):S4–S13.

    Article  Google Scholar 

  13. Arita R, Morishige N, Shirakawa R, Kawashima M, Sakimoto T, Suzuki T, Tsubota K. Increased tear fluid production as a compensatory response to meibomian gland loss: a multi-center cross-sectional study. Ophthalmol. 2015;122:925–33.

    Article  Google Scholar 

  14. Godfrey KJ, Wilsen C, Satterfield K, Korn BS, Kikkawa DO. Analysis of spontaneous eyelidblink dynamics using a 240 frames per second smartphone camera. Ophthalmic Plast Reconstr Surg. 2019. https://doi.org/10.1097/IOP.00000000000001356. [Epub ahead of print]

  15. Deinema LA, Vingrys AJ, Chinnery HR, Downie LE. Optical coherence tomography reveals changes to corneal reflectivity and thickess in individuals with tear hyperosmolarity. Transl Vis Sci Technol. 2017;6:6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gilbard JP, Farris RL, Santamaria J 2nd. Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch Ophthalmol. 1978;96:677–81.

    Article  CAS  PubMed  Google Scholar 

  17. Farris RL. Tear osmolarity-a new gold standard? Adv Exp Med Biol. 1994;350:495–503.

    Article  CAS  PubMed  Google Scholar 

  18. Tomlinson A, McCann LC, Pearce EI. Comparison of human tear film osmolarity measured by electrical impedance and freezing point depression techniques. Cornea. 2010;29(9):1036–41.

    Article  PubMed  Google Scholar 

  19. Liu H, Begley C, Chen M, Bradley A, Bonanno J, McNamara NA, Nelson JD, Simpson T. A link between tear instability and hyperosmolarity in dry eye. Invest Ophthalmol Vis Sci. 2009;50:3671–9.

    Article  PubMed  Google Scholar 

  20. Igarashi T, Fujimoto C, Suzuki H, Ono M, Iijima O, Takahashi H, Takahashi H. Short-time exposure of hyperosmolarity triggers interleukin-6 expression in corneal epithelial cells. Cornea. 2014;33:1342–7.

    Article  PubMed  Google Scholar 

  21. Gilbard JP, Carter JB, Sang DN, Refojo MF, Hanninen LA, Kenyon KR. Morphologic effect of hyperosmolarity on rabbit corneal epithelium. Ophthalmol. 1984;91:1205–12.

    Article  CAS  Google Scholar 

  22. Lemp MA, Bron AJ, Baudouin C, et al. Tear osmolarity in the diagnosis and management of dry eye disease. Am J Ophthalmol. 2011;151:792–8.

    Article  PubMed  Google Scholar 

  23. Sullivan BD, Whitmer D, Nichols KK, et al. An objective approach to dry eye disease severity. Invest Ophthalmol Vis Sci. 2010;51:6125–30.

    Article  PubMed  Google Scholar 

  24. Sullivan BD. Challenges in using signs and symptoms to evaluate new biomarkers of dry eye disease. Ocul Surf. 2014;12:2–3.

    Article  PubMed  Google Scholar 

  25. Sullivan BD, Crews LA, Sonmez B, et al. Clinical utility of objective tests for dry eye disease: variability over time and implications for clinical trials and disease management. Cornea. 2012;31:1000–8.

    Article  PubMed  Google Scholar 

  26. Khanal S, Millar TJ. Barriers to clinical uptake of tear osmolarity meaurements. Br J Ophthalmol. 2012;96:341–4.

    Article  PubMed  Google Scholar 

  27. Potvin R, Makar S, Rapuano CJ. Tear film osmolarity and dry eye disease: a review of the literature. Clin Ophthalmol. 2015;(9):2039–47.

    Google Scholar 

  28. Viso E, Rodriguez-Ares MT, Abelenda D, et al. Prevalence of asymptomatic and symptomatic meibomian gland dysfunction in the general population of Spain. Invest Ophthalmol Vis Sci. 2012;53:2601–6.

    Article  PubMed  Google Scholar 

  29. Lemp MA, Crews LA, Bron AJ, Foulks GN, Sullivan BD. Distribution of aqueous-deficient and evaporative dry eye in a clinic-based patient cohort: a retrospective study. Cornea. 2012;31:472–8.

    Article  PubMed  Google Scholar 

  30. Sjogren HSC. Zur kenntnis der keratoconjunctivitis sicca (Keratitis filiformis bei Hypofuncktion der Tranendreusen). Acta Ophthalmol (Kbh). 1933;(Supp2):1–151.

    Google Scholar 

  31. Lemp MA. Report of the National Eye Institute/Industry Workshop on clinical trials in dry eye. CLAO J. 1995;21:221–32.

    CAS  PubMed  Google Scholar 

  32. Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004;45:4293–301.

    Article  PubMed  Google Scholar 

  33. Pflugfelder SC, de Paiva CS, Li D-Q, Stern ME. Epithelial–immune cell interaction in dry eye. Cornea. 2008;27:S9–11. (1-7).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15:438–510.

    Article  PubMed  Google Scholar 

  35. Stevenson WG, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science. 1996;274:1194–7.

    Article  CAS  PubMed  Google Scholar 

  37. Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease. Int Rev Immunol. 2013;32:19–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaufman HE. The practical detection of mmp-9 diagnoses ocular surface disease and may help prevent its complications. Cornea. 2013;32:211–6.

    Article  PubMed  Google Scholar 

  39. Belmonte C, Nichols JJ, Cox SM, Brock JA, Begley CG, Bereiter DA, Dartt DA, Galor A, Hamrah P, Ivanusic JJ, Jacobs DS, McNamara NA, Rosenblatt MI, Stapleton F, Wolffsohn JS. TFOS DEWS II pain and sensation report. Ocul Surf. 2017;15:404–37.

    Article  PubMed  PubMed Central  Google Scholar 

  40. IASP. The International Association for the Study of Pain: https://www.iasp-pain.org.

  41. Quallo T, Vastani N, Horridge E, Gentry C, Parra A, Moss S, et al. TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. Nat Commun. 2015;6:7150.

    Article  PubMed  Google Scholar 

  42. Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol. 2011;24:577–83.

    Article  CAS  PubMed  Google Scholar 

  43. Nichols KK, Nichols JJ, Mitchell GL. The lack of association between signs and symptoms in patients with dry eye disease. Cornea. 2004;23:762–70.

    Article  PubMed  Google Scholar 

  44. De Paiva CS, Pflugfelder SC. Corneal epitheliopathy of dry eye induces hyperesthesia to mechanical air jet stimulation. Am J Ophthalmol. 2004;137:109–15.

    Article  PubMed  Google Scholar 

  45. Xu KP, Yagi Y, Tsubota K. Decrease in corneal sensitivity and change in tear function in dry eye. Cornea. 1996;15:235–9.

    Article  CAS  PubMed  Google Scholar 

  46. Versura P, Frigato M, Cellini M, Mulè R, Malavolta N, Campos EC. Diagnostic performance of tear function tests in Sjogren’s syndrome patients. Eye (Lond). 2007;21:229–37.

    Article  PubMed  Google Scholar 

  47. Geber C, Baumg€artner U, Schwab R, Müller H, Stoeter P, Dieterich M, et al. Revised definition of neuropathic pain and its grading system: an open case series illustrating its use in clinical practice. Am J Med. 2009;122(10 Suppl):S3–12.

    Article  PubMed  Google Scholar 

  48. Wolffsohn JS, Arita R, Chalmers R, Djalilian A, Dogru M, Dumbleton K, et al. TFOS DEWS II diagnostic methodology report. Ocul Surf. 2017;15:539–74.

    Article  PubMed  Google Scholar 

  49. Qazi Y, Hurwitz S, Khan S, Jurkunas UV, Dana R, Hamrah P. Validity and reliability of a novel ocular pain assessment survey (OPAS) in quantifying and monitoring corneal and ocular surface pain. Ophthalmology. 2016;123:1458–68.

    Article  PubMed  Google Scholar 

  50. Stave J, Zinser G, Grummer G, Guthoff R. Modified Heidelberg Retinal Tomograph HRT. Initial results of in vivo presentation of corneal structures. Ophthalmologe. 2002;99:276–80.

    Article  CAS  PubMed  Google Scholar 

  51. Kheirkhah A, Dohlman TH, Amparo F, Arnoldner MA, Jamali A, Hamrah P, et al. Effects of corneal nerve density on the response to treatment in dry eye disease. Ophthalmology. 2015;122:662–8.

    Article  PubMed  Google Scholar 

  52. Lambiase A, Micera A, Sacchetti M, Cortes M, Mantelli F, Bonini S. Alterations of tear neuromediators in dry eye disease. Arch Ophthalmol. 2011;129:981–6.

    Article  CAS  PubMed  Google Scholar 

  53. Baudouin C. A new approach for better comprehension of diseases of the ocular surface. J Fr Ophtalmol. 2007;30:239–46.

    Article  CAS  PubMed  Google Scholar 

  54. Baudouin C, Messmer EM, Aragona P, Geerling G, Labetoulle M. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. Br J Ophthalmol. 2016.

    Google Scholar 

  55. The definition and classification of dry eye disease: report of the definition and classification subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:75–92.

    Google Scholar 

  56. Shikari H, Antin JH, Dana R. Ocular graft-versus-host disease: a review. Surv Ophthalmol. 2013;58:233–51.

    Article  PubMed  Google Scholar 

  57. Geerling G, Tauber J, Baudouin C, Goto E, Matsumoto Y, O’Brien T, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on management and treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2011;52:2050–64.

    Article  Google Scholar 

  58. Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL. Reliability and validity of the ocular surface disease index. Arch Ophthalmol. 2000;118:615–21.

    Article  CAS  PubMed  Google Scholar 

  59. Chalmers RL, Begley CG, Caffery B. Validation of the 5-Item Dry Eye Ques- tionnaire (DEQ-5): discrimination across self-assessed severity and aqueous tear deficient dry eye diagnoses. Cont Lens Anterior Eye. 2010;33:55–60.

    Article  PubMed  Google Scholar 

  60. Sullivan BD, Whitmer D, Nichols KK, Tomlinson A, Foulks GN, Geerling G, Khanal S, Ramaesh K, Diaper C, McFadyen A. Tear film osmolarity: determination of a referent for dry eye diagnosis. Invest Ophthalmol Vis Sci. 2010;47:4309–15.

    Google Scholar 

  61. de Monchy I, Gendron G, Miceli C, Pogorzalek N, Mariette X, Labetoulle M. Combination of the Schirmer I and phenol red thread tests as a rescue strategy for diagnosis of ocular dryness associated with Sjogren’s syndrome. Invest Ophthalmol Vis Sci. 2011;52:5167–73.

    Google Scholar 

  62. Center for Drug Evaluation and Research, approval 021023 (Oct 10, 2003).

    Google Scholar 

  63. Center for Drug Evaluation and Research, approval 208073 (July 12, 2017).

    Google Scholar 

  64. Perry HD, Solomon R, Donnenfeld ED, Perry AR, Wittpenn JR, Greenman HE, Savage HE. Evaluation of topical cyclosporine for the treatment of dry eye disease. Arch Ophthalmol. 2008;126:1046–50.

    Article  PubMed  Google Scholar 

  65. Personal communication, Kim Brazzell, PhD, Kala Pharmaceuticals, 2018.

    Google Scholar 

  66. Lambiase A, Sullivan BD, Schmidt TA, Sullivan DA, Jay GD, Truitt ER 3rd, Bruscolini A, Sacchetti M, Mantelli F. A two-week, randomized, double-masked study to evaluate safety and efficacy of Lubricin(150 μg/mL) eye drops versus sodium hyaluronate (HA) 0.18% eye drops (Vismed®) in patients with moderate dry eye disease. Ocul Surf. 2017;15:77–87.

    Article  PubMed  Google Scholar 

  67. Karnatia R, Laurieb DE, Laurie GW. Lacritin and the tear proteome as natural replacement therapy for dry eye. Exp Eye Res. 2013;117:39–52.

    Article  CAS  Google Scholar 

  68. Lane SS, DuBiner HB, Epstein RJ, et al. A new system, the LipiFlow, for the treatment of meibomian gland dysfunction. Cornea. 2012;31:396–404.

    Article  PubMed  Google Scholar 

  69. Friedman NJ, Butron K, Robledo N, Loudin J, Baba SN, Chayet A. A nonrandomized, open-label study to evaluate the effect of nasal stimulation on tear production in subjects with dry eye disease. Clin Ophthalmol. 2016;10:795–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gumus K, Schuetzle KL, Stephen C, Pflugfelder SC. Randomized, controlled, crossover trial comparing the impact of sham or intranasal neurostimulation on conjunctival goblet cell degranulation. Am J Ophthalmol. 2017;177:159–68.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lemp, M.A., Foulks, G.N. (2020). Dry Eye Disease: A Modern History. In: Colby, K., Dana, R. (eds) Foundations of Corneal Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25335-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25335-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25334-9

  • Online ISBN: 978-3-030-25335-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics