Skip to main content

Corneal Angiogenesis and Lymphangiogenesis

  • Chapter
  • First Online:
  • 666 Accesses

Abstract

Due to several corneal diseases [1] (Table 21.1) and after surgery [2], blood and lymphatic vessels can grow into the normally avascular cornea. This neovascularization starts for both blood and lymphatic vessels at the limbal vascular plexus. Blood vessels impair significantly the visual function of the cornea due to opacification by blood vessels themselves but also by secondary effects such as oedema and lipid keratopathy in the corneal stroma. Lymphangiogenesis in contrast is visually not disturbing, but a key risk factor for immune reactions after corneal transplantation [3]. Hem- and lymphangiogenesis do not only occur as a consequence of diseases but can also be the reason for infectious or inflammatory corneal diseases. Both hem- and lymphangiogenesis are an essential part of the worldwide most frequent reasons for corneal blindness (trachoma) [4] and the most frequent reason for infectious blindness – herpetic keratitis – in the western civilization [5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cursiefen C, Kuchle M, Naumann GO. Angiogenesis in corneal diseases: histopathologic evaluation of 254 human corneal buttons with neovascularization. Cornea. 1998;17:611–3.

    Article  CAS  PubMed  Google Scholar 

  2. Cursiefen C, Martus P, Nguyen NX, Langenbucher A, Seitz B, Kuchle M. Corneal neovascularization after nonmechanical versus mechanical corneal trephination for non-high-risk keratoplasty. Cornea. 2002;21:648–52.

    Article  PubMed  Google Scholar 

  3. Hou Y, Le VNH, Clahsen T, Schneider AC, Bock F, Cursiefen C. Photodynamic therapy leads to time-dependent regression of pathologic corneal (lymph) angiogenesis and promotes high-risk corneal allograft survival. Invest Ophthalmol Vis Sci. 2017;58:5862–9. https://doi.org/10.1167/iovs.17-22904.

    Article  CAS  PubMed  Google Scholar 

  4. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79:214–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pepose JS, Leib DA, Stuart PM, Easty EL. Herpes simplex virus disease: anterior segment of the eye. St Louis: Mosby-Year-Book; 1996.

    Google Scholar 

  6. Bock F, Maruyama K, Regenfuss B, Hos D, Steven P, Heindl LM, Cursiefen C. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog Retin Eye Res. 2013;34:89–124. https://doi.org/10.1016/j.preteyeres.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  7. Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol. 2001;12:242–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cursiefen C, Masli S, Ng TF, Dana MR, Bornstein P, Lawler J, Streilein JW. Roles of thrombospondin-1 and -2 in regulating corneal and iris angiogenesis. Invest Ophthalmol Vis Sci. 2004;45:1117–24.

    Article  PubMed  Google Scholar 

  9. Cursiefen C, Chen L, Saint-Geniez M, Hamrah P, Jin Y, Rashid S, Pytowski B, Persaud K, Wu Y, Streilein JW, Dana R. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci U S A. 2006;103:11405–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Singh N, Tiem M, Watkins R, Cho YK, Wang Y, Olsen T, Uehara H, Mamalis C, Luo L, Oakey Z, Ambati BK. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood. 2013;121:4242–9. https://doi.org/10.1182/blood-2012-08-453043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, Chappell J, Wilting J, Weich HA, Yamagami S, Amano S, Mizuki N, Alexander JS, Peterson ML, Brekken RA, Hirashima M, Capoor S, Usui T, Ambati BK, Ambati J. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 2009;15:1023–30. https://doi.org/10.1038/nm.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bock F, Onderka J, Braun G, Schneider AC, Hos D, Bi Y, Bachmann BO, Cursiefen C. Identification of novel endogenous anti(lymph)angiogenic factors in the aqueous humor. Invest Ophthalmol Vis Sci. 2016;57:6554–60. https://doi.org/10.1167/iovs.15-18526.

    Article  CAS  PubMed  Google Scholar 

  13. Cursiefen C, Rummelt C, Kuchle M. Immunohistochemical localization of vascular endothelial growth factor, transforming growth factor alpha, and transforming growth factor beta1 in human corneas with neovascularization. Cornea. 2000;19:526–33.

    Article  CAS  PubMed  Google Scholar 

  14. Mastyugin V, Mosaed S, Bonazzi A, Dunn MW, Schwartzman ML. Corneal epithelial VEGF and cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear. Curr Eye Res. 2001;23:1–10.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng M, Deshpande S, Lee S, Ferrara N, Rouse BT. Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis. J Virol. 2001;75:9828–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zheng M, Schwarz MA, Lee S, Kumaraguru U, Rouse BT. Control of stromal keratitis by inhibition of neovascularization. Am J Pathol. 2001;159:1021–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhu SN, Dana MR. Expression of cell adhesion molecules on limbal and neovascular endothelium in corneal inflammatory neovascularization. Invest Ophthalmol Vis Sci. 1999;40:1427–34.

    CAS  PubMed  Google Scholar 

  18. Cursiefen C, Chen L, Dana MR, Streilein JW. Corneal lymphangiogenesis: evidence, mechanisms, and implications for corneal transplant immunology. Cornea. 2003;22:273–81.

    Article  PubMed  Google Scholar 

  19. Cursiefen C, Schlotzer-Schrehardt U, Kuchle M, Sorokin L, Breiteneder-Geleff S, Alitalo K, Jackson D. Lymphatic vessels in vascularized human corneas: immunohistochemical investigation using LYVE-1 and podoplanin. Invest Ophthalmol Vis Sci. 2002;43:2127–35.

    PubMed  Google Scholar 

  20. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 2004;113:1040–50. https://doi.org/10.1172/JCI20465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103:159–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Cursiefen C, Hofmann-Rummelt C, Kuchle M, Schlotzer-Schrehardt U. Pericyte recruitment in human corneal angiogenesis: an ultrastructural study with clinicopathological correlation. Br J Ophthalmol. 2003;87:101–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Le VNH, Schneider AC, Scholz R, Bock F, Cursiefen C. Fine needle-diathermy regresses pathological corneal (lymph)angiogenesis and promotes high-risk corneal transplant survival. Sci Rep. 2018;8:5707. https://doi.org/10.1038/s41598-018-24037-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hou Y, Le VNH, Toth G, Siebelmann S, Horstmann J, Gabriel T, Bock F, Cursiefen C. UV light crosslinking regresses mature corneal blood and lymphatic vessels and promotes subsequent high-risk corneal transplant survival. Am J Transplant. 2018;18:2873–84. https://doi.org/10.1111/ajt.14874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goyal S, Chauhan SK, El Annan J, Nallasamy N, Zhang Q, Dana R. Evidence of corneal lymphangiogenesis in dry eye disease: a potential link to adaptive immunity? Arch Ophthalmol. 2010;128:819–24. https://doi.org/10.1001/archophthalmol.2010.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hos D, Bukowiecki A, Horstmann J, Bock F, Bucher F, Heindl LM, Siebelmann S, Steven P, Dana R, Eming SA, Cursiefen C. Transient ingrowth of lymphatic vessels into the physiologically avascular cornea regulates corneal edema and transparency. Sci Rep. 2017;7:7227. https://doi.org/10.1038/s41598-017-07806-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang M, Wang B, Wan P, Liang X, Wang X, Liu Y, Zhou Q, Wang Z. Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells. Cell Tissue Res. 2015;359:547–63. https://doi.org/10.1007/s00441-014-2032-4.

    Article  CAS  PubMed  Google Scholar 

  28. Notara M, Alatza A, Gilfillan J, Harris AR, Levis HJ, Schrader S, Vernon A, Daniels JT. In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res. 2010;90:188–95. https://doi.org/10.1016/j.exer.2009.09.023.

    Article  CAS  PubMed  Google Scholar 

  29. Notara M, Refaian N, Braun G, Steven P, Bock F, Cursiefen C. Short-term uvb-irradiation leads to putative limbal stem cell damage and niche cell-mediated upregulation of macrophage recruiting cytokines. Stem Cell Res. 2015;15:643–54. https://doi.org/10.1016/j.scr.2015.10.008.

    Article  CAS  PubMed  Google Scholar 

  30. Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G, Wiegand S, Chen L, Cursiefen C. Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol. 2010;184:535–9. https://doi.org/10.4049/jimmunol.0903180.

    Article  CAS  PubMed  Google Scholar 

  31. Reuer T, Schneider AC, Cakir B, Buhler AD, Walz JM, Lapp T, Lange C, Agostini H, Schlunck G, Cursiefen C, Reinhard T, Bock F, Stahl A. Semaphorin 3F modulates corneal lymphangiogenesis and promotes corneal graft survival. Invest Ophthalmol Vis Sci. 2018;59:5277–84. https://doi.org/10.1167/iovs.18-24287.

    Article  CAS  PubMed  Google Scholar 

  32. Maguire MG, Stark WJ, Gottsch JD, Stulting RD, Sugar A, Fink NE, Schwartz A. Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies. Collaborative Corneal Transplantation Studies Research Group. Ophthalmology. 1994;101:1536–47.

    Article  CAS  PubMed  Google Scholar 

  33. Kuchle M, Cursiefen C, Nguyen NX, Langenbucher A, Seitz B, Wenkel H, Martus P, Naumann GO. Risk factors for corneal allograft rejection: intermediate results of a prospective normal-risk keratoplasty study. Graefes Arch Clin Exp Ophthalmol. 2002;240:580–4.

    Article  PubMed  Google Scholar 

  34. Schroedl F, Kaser-Eichberger A, Schlereth SL, Bock F, Regenfuss B, Reitsamer HA, Lutty GA, Maruyama K, Chen L, Lutjen-Drecoll E, Dana R, Kerjaschki D, Alitalo K, De Stefano ME, Junghans BM, Heindl LM, Cursiefen C. Consensus statement on the immunohistochemical detection of ocular lymphatic vessels. Invest Ophthalmol Vis Sci. 2014;55:6440–2. https://doi.org/10.1167/iovs.14-15638.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Hamrah P, Zhang Q, Taylor AW, Dana MR. Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) class II-positive dendritic cells derived from MHC class II-negative grafts. J Exp Med. 2002;195:259–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Yamagami S, Dana MR. The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest Ophthalmol Vis Sci. 2001;42:1293–8.

    CAS  PubMed  Google Scholar 

  37. Dana MR, Schaumberg DA, Kowal VO, Goren MB, Rapuano CJ, Laibson PR, Cohen EJ. Corneal neovascularization after penetrating keratoplasty. Cornea. 1995;14:604–9.

    CAS  PubMed  Google Scholar 

  38. Chan WK, Weissman BA. Corneal pannus associated with contact lens wear. Am J Ophthalmol. 1996;121:540–6.

    Article  CAS  PubMed  Google Scholar 

  39. Donnenfeld ED, Ingraham H, Perry HD, Imundo M, Goldberg LP. Contact lens-related deep stromal intracorneal hemorrhage. Ophthalmology. 1991;98:1793–6.

    Article  CAS  PubMed  Google Scholar 

  40. Bock F, Matthaei M, Reinhard T, Bohringer D, Christoph J, Ganslandt T, Cursiefen C. High-dose subconjunctival cyclosporine a implants do not affect corneal neovascularization after high-risk keratoplasty. Ophthalmology. 2014;121:1677–82. https://doi.org/10.1016/j.ophtha.2014.03.016.

    Article  PubMed  Google Scholar 

  41. Becker B. The side effects of corticosteroids. Investig Ophthalmol. 1964;3:492–7.

    CAS  Google Scholar 

  42. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  43. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg. 1972;175:409–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bock F, Konig Y, Kruse F, Baier M, Cursiefen C. Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2008;246:281–4.

    Article  CAS  PubMed  Google Scholar 

  45. Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005;65:3967–79.

    Article  CAS  PubMed  Google Scholar 

  46. Lafleur MA, Handsley MM, Edwards DR. Metalloproteinases and their inhibitors in angiogenesis. Expert Rev Mol Med. 2003;2003:1–39.

    Article  Google Scholar 

  47. Cursiefen C, Cao J, Chen L, Liu Y, Maruyama K, Jackson D, Kruse FE, Wiegand SJ, Dana MR, Streilein JW. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci. 2004;45:2666–73.

    Article  PubMed  Google Scholar 

  48. Cursiefen C, Ikeda S, Nishina PM, Smith RS, Ikeda A, Jackson D, Mo JS, Chen L, Dana MR, Pytowski B, Kruse FE, Streilein JW. Spontaneous corneal hem- and lymphangiogenesis in mice with destrin-mutation depend on VEGFR3 signaling. Am J Pathol. 2005;166:1367–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.

    CAS  PubMed  Google Scholar 

  50. Dastjerdi MH, Al-Arfaj KM, Nallasamy N, Hamrah P, Jurkunas UV, Pineda R 2nd, Pavan-Langston D, Dana R. Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, noncomparative study. Arch Ophthalmol. 2009;127:381–9. https://doi.org/10.1001/archophthalmol.2009.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bock F, Onderka J, Dietrich T, Bachmann B, Kruse FE, Paschke M, Zahn G, Cursiefen C. Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Invest Ophthalmol Vis Sci. 2007;48:2545–52. https://doi.org/10.1167/iovs.06-0570.

    Article  PubMed  Google Scholar 

  52. Ferrara N, Chen H, Davis-Smyth T, Gerber HP, Nguyen TN, Peers D, Chisholm V, Hillan KJ, Schwall RH. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998;4:336–40.

    Article  CAS  PubMed  Google Scholar 

  53. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–8.

    Article  CAS  PubMed  Google Scholar 

  54. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A. 2002;99:11393–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Bachmann BO, Bock F, Wiegand SJ, Maruyama K, Dana MR, Kruse FE, Luetjen-Drecoll E, Cursiefen C. Promotion of graft survival by vascular endothelial growth factor a neutralization after high-risk corneal transplantation. Arch Ophthalmol. 2008;126:71–7. https://doi.org/10.1001/archopht.126.1.71.

    Article  PubMed  Google Scholar 

  56. Bachmann BO, Luetjen-Drecoll E, Bock F, Wiegand SJ, Hos D, Dana R, Kruse FE, Cursiefen C. Transient postoperative vascular endothelial growth factor (VEGF)-neutralisation improves graft survival in corneas with partly regressed inflammatory neovascularisation. Br J Ophthalmol. 2009;93:1075–80. https://doi.org/10.1136/bjo.2008.145128.

    Article  CAS  PubMed  Google Scholar 

  57. Salabarria AC, Braun G, Heykants M, Koch M, Reuten R, Mahabir E, Cursiefen C, Bock F. Local VEGF-A blockade modulates the microenvironment of the corneal graft bed. Am J Transplant. 2019; https://doi.org/10.1111/ajt.15331.

    Article  CAS  PubMed  Google Scholar 

  58. Cursiefen C, Bock F, Horn FK, Kruse FE, Seitz B, Borderie V, Fruh B, Thiel MA, Wilhelm F, Geudelin B, Descohand I, Steuhl KP, Hahn A, Meller D. GS-101 antisense oligonucleotide eye drops inhibit corneal neovascularization: interim results of a randomized phase II trial. Ophthalmology. 2009;116:1630–7. https://doi.org/10.1016/j.ophtha.2009.04.016.

    Article  PubMed  Google Scholar 

  59. Koenig Y, Bock F, Kruse FE, Stock K, Cursiefen C. Angioregressive pretreatment of mature corneal blood vessels before keratoplasty: fine-needle vessel coagulation combined with anti-VEGFs. Cornea. 2012;31:887–92. https://doi.org/10.1097/ICO.0b013e31823f8f7a.

    Article  PubMed  Google Scholar 

  60. Brooks BJ, Ambati BK, Marcus DM, Ratanasit A. Photodynamic therapy for corneal neovascularisation and lipid degeneration. Br J Ophthalmol. 2004;88:840.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, Maekawa H, Kimura Y, Ohmura M, Miyamoto T, Nozawa S, Koh GY, Alitalo K, Suda T. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood. 2005;105:4649–56. https://doi.org/10.1182/blood-2004-08-3382.

    Article  CAS  PubMed  Google Scholar 

  62. Song SH, Kim KL, Lee KA, Suh W. Tie1 regulates the Tie2 agonistic role of angiopoietin-2 in human lymphatic endothelial cells. Biochem Biophys Res Commun. 2012;419:281–6. https://doi.org/10.1016/j.bbrc.2012.02.009.

    Article  CAS  PubMed  Google Scholar 

  63. Tammela T, Saaristo A, Holopainen T, Yla-Herttuala S, Andersson LC, Virolainen S, Immonen I, Alitalo K. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci Transl Med. 2011;3:69ra11. https://doi.org/10.1126/scitranslmed.3001699.

    Article  CAS  PubMed  Google Scholar 

  64. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.

    Article  CAS  PubMed  Google Scholar 

  65. Kohlhaas M, Spoerl E, Speck A, Schilde T, Sandner D, Pillunat LE. A new treatment of keratectasia after LASIK by using collagen with riboflavin/UVA light cross-linking. Klin Monatsbl Augenheilkd. 2005;222:430–6. https://doi.org/10.1055/s-2005-857950.

    Article  CAS  PubMed  Google Scholar 

  66. Goodrich RP. The use of riboflavin for the inactivation of pathogens in blood products. Vox Sang. 2000;78(Suppl 2):211–5.

    CAS  PubMed  Google Scholar 

  67. Tabibian D, Richoz O, Hafezi F. PACK-CXL: corneal cross-linking for treatment of infectious keratitis. J Ophthalmic Vis Res. 2015;10:77–80. https://doi.org/10.4103/2008-322X.156122.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Le VNH, Hou Y, Horstmann J, Bock F, Cursiefen C. Novel method to detect corneal lymphatic vessels in vivo by intrastromal injection of fluorescein. Cornea. 2018;37:267–71. https://doi.org/10.1097/ICO.0000000000001444.

    Article  PubMed  Google Scholar 

  69. Horstmann J, Schulz-Hildebrandt H, Bock F, Siebelmann S, Lankenau E, Huttmann G, Steven P, Cursiefen C. Label-free in vivo imaging of corneal lymphatic vessels using microscopic optical coherence tomography. Invest Ophthalmol Vis Sci. 2017;58:5880–6. https://doi.org/10.1167/iovs.17-22286.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We appreciate support from DFG Research Unit FOR2240 (www.for2240.de), EU Arrest Blindness (www.arrestblindness.eu) and EU Cost Action Biocornea (www.biocornea.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Cursiefen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bock, F., Cursiefen, C. (2020). Corneal Angiogenesis and Lymphangiogenesis. In: Colby, K., Dana, R. (eds) Foundations of Corneal Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25335-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25335-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25334-9

  • Online ISBN: 978-3-030-25335-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics