Skip to main content

Novel Approaches for Restoring the Function of the Limbal Stem Cell Niche

  • Chapter
  • First Online:

Abstract

Various congenital, traumatic, toxic, and autoimmune processes may lead to limbal stem cell dysfunction (LSCD). In the past, patients with LSCD suffered from permanent loss of visual function as the condition was difficult to manage. In recent decades, research in this area has led to novel treatment paradigms. It was discovered that significant corneal injury in patients with LSCD can lead to not only a decreased number of corneal epithelial progenitor cells but also a disturbance in the limbal stem cell niche. Under these pathological conditions, a pro-inflammatory environment persists in patients with LSCD, leading to continued activation of inflammatory cytokines, impaired macrophage phagocytosis, and pathological hemangiogenesis. Thus, the current strategy in corneal regeneration in this area is a two-pronged approach, including both direct repopulation of limbal epithelial stem cells (LESCs) and also restoration of the limbal stem cell niche. In this chapter, a summary of current approaches to corneal epithelial regeneration will be provided. Novel research into possible future approaches to corneal regeneration including the use of mesenchymal stem cells will also be discussed (Fig. 20.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol. 2005;89:529–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grieve K, et al. Three-dimensional structure of the mammalian limbal stem cell niche. Exp Eye Res. 2015;140:75–84.

    Article  CAS  PubMed  Google Scholar 

  3. Dziasko MA, et al. Localisation of epithelial cells capable of holoclone formation in vitro and direct interaction with stromal cells in the native human limbal crypt. PLoS One. 2014;9:e94283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mathews S, et al. In vivo confocal microscopic analysis of normal human anterior limbal stroma. Cornea. 2015;34:464–70.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Higa K, et al. Aquaporin 1-positive stromal niche-like cells directly interact with N-cadherin-positive clusters in the basal limbal epithelium. Stem Cell Res. 2013;10:147–55.

    Article  CAS  PubMed  Google Scholar 

  6. Yamada K, et al. Mesenchymal-epithelial cell interactions and proteoglycan matrix composition in the presumptive stem cell niche of the rabbit corneal limbus. Mol Vis. 2015;21:1328–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie H-T, Chen S-Y, Li G-G, Tseng SCG. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem Cells. 2011;29:1874–85.

    Article  CAS  PubMed  Google Scholar 

  8. Han B, Chen S-Y, Zhu Y-T, Tseng SCG. Integration of BMP/Wnt signaling to control clonal growth of limbal epithelial progenitor cells by niche cells. Stem Cell Res. 2014;12:562–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cornea, 2-Volume Set, 4th ed. Mannis & Holland. (Elsevier, 2017).

    Google Scholar 

  10. Sharma SM, et al. Comparative analysis of human-derived feeder layers with 3T3 fibroblasts for the ex vivo expansion of human limbal and oral epithelium. Stem Cell Rev. 2012;8:696–705.

    Article  CAS  Google Scholar 

  11. Miyashita H, et al. A novel NIH/3T3 duplex feeder system to engineer corneal epithelial sheets with enhanced cytokeratin 15-positive progenitor populations. Tissue Eng Part A. 2008;14:1275–82.

    Article  CAS  PubMed  Google Scholar 

  12. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6:331–43.

    Article  CAS  PubMed  Google Scholar 

  13. Ramírez BE, et al. Stem cell therapy for corneal epithelium regeneration following good manufacturing and clinical procedures. Biomed Res Int. 2015;2015:408495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Levis HJ, Brown RA, Daniels JT. Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials. 2010;31:7726–37.

    Article  CAS  PubMed  Google Scholar 

  15. Tidu A, et al. Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration. Acta Biomater. 2015;22:50–8.

    Article  CAS  PubMed  Google Scholar 

  16. Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials. 2006;27:4608–17.

    Article  CAS  PubMed  Google Scholar 

  17. Brown KD, et al. Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency. Tissue Eng Part A. 2014;20:646–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rama P, et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation. 2001;72:1478–85.

    Article  CAS  PubMed  Google Scholar 

  19. Sotozono C, et al. Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology. 2013;120:193–200.

    Article  PubMed  Google Scholar 

  20. Nakamura T, et al. Phenotypic investigation of human eyes with transplanted autologous cultivated oral mucosal epithelial sheets for severe ocular surface diseases. Ophthalmology. 2007;114:1080–8.

    Article  PubMed  Google Scholar 

  21. Ricardo JRS, et al. Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea. 2013;32:221–8.

    Article  PubMed  Google Scholar 

  22. Jeon S, Choi SH, Wolosin JM, Chung S-H, Joo C-K. Regeneration of the corneal epithelium with conjunctival epithelial equivalents generated in serum- and feeder-cell-free media. Mol Vis. 2013;19:2542–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hayashi R, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature. 2016;531:376–80.

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi R, et al. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc. 2017;12:683–96.

    Article  CAS  PubMed  Google Scholar 

  25. Zakaria N, et al. Results of a phase I/II clinical trial: standardized, non-xenogenic, cultivated limbal stem cell transplantation. J Transl Med. 2014;12:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Behaegel J, Ní Dhubhghaill S, Koppen C, Zakaria N. Safety of cultivated limbal epithelial stem cell transplantation for human corneal regeneration. Stem Cells Int. 2017;2017:6978253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haagdorens M, et al. Limbal stem cell deficiency: current treatment options and emerging therapies. Stem Cells Int. 2016;2016:9798374.

    Article  PubMed  CAS  Google Scholar 

  28. Kojima T, et al. Autologous serum eye drops for the treatment of dry eye diseases. Cornea. 2008;27(Suppl 1):S25–30.

    Article  PubMed  Google Scholar 

  29. Soni NG, Jeng BH. Blood-derived topical therapy for ocular surface diseases. Br J Ophthalmol. 2016;100:22–7.

    Article  PubMed  Google Scholar 

  30. López-Plandolit S, Morales M-C, Freire V, Grau AE, Durán JA. Efficacy of plasma rich in growth factors for the treatment of dry eye. Cornea. 2011;30:1312–7.

    Article  PubMed  Google Scholar 

  31. Freire V, et al. Corneal wound healing promoted by 3 blood derivatives: an in vitro and in vivo comparative study. Cornea. 2014;33:614–20.

    Article  PubMed  Google Scholar 

  32. John T. Human amniotic membrane transplantation: past, present, and future. Ophthalmol Clin N Am. 2003;16:43–65, vi.

    Article  Google Scholar 

  33. Rahman I, Said DG, Maharajan VS, Dua HS. Amniotic membrane in ophthalmology: indications and limitations. Eye (Lond). 2009;23:1954–61.

    Article  CAS  Google Scholar 

  34. Optimizing the ocular surface with amniotic membrane therapy | Ophthalmology Magazine. Available at: https://www.eyeworld.org/optimizing-ocular-surface-amniotic-membrane-therapy. Accessed: 1 Jan 2018.

  35. Paolin A, et al. Amniotic membranes in ophthalmology: long term data on transplantation outcomes. Cell Tissue Bank. 2016;17:51–8.

    Article  PubMed  Google Scholar 

  36. Campbell JDM, et al. Allogeneic ex vivo expanded corneal epithelial stem cell transplantation: a randomized controlled clinical trial. Stem Cells Transl Med. 2019; https://doi.org/10.1002/sctm.18-0140.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jirsova K, Jones GLA. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review. Cell Tissue Bank. 2017;18:193–204.

    Article  CAS  PubMed  Google Scholar 

  38. Lu Y, et al. Characterization of a hydrogel derived from decellularized corneal extracellular matrix. 2015. https://doi.org/10.1166/jbt.2015.1410.

    Article  Google Scholar 

  39. Shafiq MA, Gemeinhart RA, Yue BYJT, Djalilian AR. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng Part C Methods. 2012;18:340–8.

    Article  CAS  PubMed  Google Scholar 

  40. Dehghani S, et al. 3D-Printed membrane as an alternative to amniotic membrane for ocular surface/conjunctival defect reconstruction: an in vitro & in vivo study. Biomaterials. 2018;174:95–112.

    Article  CAS  PubMed  Google Scholar 

  41. Abdel-Naby W, et al. Silk-derived protein enhances corneal epithelial migration, adhesion, and proliferation. Invest Ophthalmol Vis Sci. 2017;58:1425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lawrence BD, Pan Z, Rosenblatt MI. Silk film topography directs collective epithelial cell migration. PLoS One. 2012;7:e50190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang KB, et al. Micro- and nanoscale topographies on silk regulate gene expression of human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2017;58:6388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mittal SK, et al. Restoration of corneal transparency by mesenchymal stem cells. Stem Cell Reports. 2016;7:583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davies BW, Panday V, Caldwell M, Scribbick F, Reilly CD. Effect of topical immunomodulatory interleukin 1 receptor antagonist therapy on corneal healing in New Zealand white rabbits (Oryctolagus cunniculus) after photorefractive keratectomy. Arch Ophthalmol. 2011;129:909–13.

    Article  CAS  PubMed  Google Scholar 

  46. Lan Y, et al. Kinetics and function of mesenchymal stem cells in corneal injury. Invest Ophthalmol Vis Sci. 2012;53:3638–44.

    Article  CAS  PubMed  Google Scholar 

  47. Acar U, et al. Effect of allogeneic limbal mesenchymal stem cell therapy in corneal healing: role of administration route. Ophthalmic Res. 2015;53:82–9.

    Article  CAS  PubMed  Google Scholar 

  48. Eslani M, et al. Cornea-derived mesenchymal stromal cells therapeutically modulate macrophage immunophenotype and angiogenic function. Stem Cells. 2018;36:775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Samaeekia R, et al. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2018;59:5194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eslani M, et al. Corneal mesenchymal stromal cells are directly antiangiogenic via PEDF and sFLT-1. Invest Ophthalmol Vis Sci. 2017;58:5507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yazdanpanah G, et al. Strategies for reconstructing the limbal stem cell niche. Ocul Surf. 2019; https://doi.org/10.1016/j.jtos.2019.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. D’jalilian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, K.B., Rosenblatt, M.I., D’jalilian, A.R. (2020). Novel Approaches for Restoring the Function of the Limbal Stem Cell Niche. In: Colby, K., Dana, R. (eds) Foundations of Corneal Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25335-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25335-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25334-9

  • Online ISBN: 978-3-030-25335-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics